Loading...
Search for: electric-control-equipment
0.007 seconds
Total 45 records

    Optimal PID control of a nano-Newton CMOS-MEMS capacitive force sensor for biomedical applications

    , Article Mechanics and Industry ; Vol. 15, issue. 2 , January , 2014 , p. 139-145 Mozhdehi, R. J ; Ghafari, A. S ; Sharif University of Technology
    Abstract
    This paper presents closed loop simulation of a CMOS-MEMS force sensor for biomedical applications employing an optimal proportional-integral-derivative controller. Since the dynamic behavior of the sensor under investigation is nonlinear the iterative feedback tuning approach was proposed for optimal gains tuning of the proposed controller. Simulation results presented in this research illustrate that the proposed controller suppresses the undesired in-plane vibration induced by environment or gripper 40 times faster than the nonlinear controller proposed in the literature. To suppress the maximum input disturbance the maximum voltage was approximately 18 V which was less than the pull-in... 

    Supervisory predictive control of power system load frequency control

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 61, issue , October , 2014 , p. 70-80 Shiroei, M ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Objective: The objective of this paper is to develop a hierarchical two-level power system load frequency control. Design: At the button level, standard PI controllers are utilized to control area's frequency and tie-line power interchanges. At the higher layer, model predictive control (MPC) is employed as a supervisory controller to determine the optimal set-point for the PI controllers in the lower layer. The proposed supervisory predictive controller computes the optimal set-points such that to coordinate decentralized local controllers. Blocking and coincidence point technology is employed to alleviate the computational effort of the MPC. In order to achieve the best closed loop... 

    A cost/worth approach to evaluate UPFC impact on ATC

    , Article Journal of Electrical Engineering and Technology ; Vol. 5, issue. 3 , 2010 , p. 389-399 ; ISSN: 19750102 Rajabi Ghahnavieh, A ; Fotuhi Firuzabad, M ; Shahidehpour, M ; Feuillet, R ; Sharif University of Technology
    Abstract
    Available transfer capability (ATC) is a measure of the transfer capability remaining in a transmission system. Application of unified power flow controllers (UPFCs) could have positive impacts on the ATC of some paths while it might have a negative impact on the ATC of other paths. This paper presents an approach to evaluate the impacts of UPFCs on the ATC from a cost/worth point of view. The UPFC application worth is considered as the maximum cost saving in enhancing the ATC of the paths due to the UPFC implementation. The cost saving is considered as the cost of optimal application of other system reinforcement alternatives (except for UPFC) to reach the same ATC level obtained by UPFC... 

    Optimal placement of unified power flow controllers (UPFCs) using mixed-integer non-linear programming (MINLP) method

    , Article 2009 IEEE Power and Energy Society General Meeting, PES '09, 26 July 2009 through 30 July 2009, Calgary, AB ; 2009 ; 9781424442416 (ISBN) Aminifar, F ; Fotuhi Firuzabad, M ; Khodaei, A ; Faried, S. O ; Sharif University of Technology
    Abstract
    Utilization of Unified Power Flow Controllers (UPFCs) can be more beneficial in the restructured power systems due to their capabilities in increasing the transmission line capacities as well as shunt reactive compensation. So, these devices should be installed such that the most benefit can be gained. In this paper, the problem of optimal placement of UPFCs is solved using Mixed-Integer Non-Linear Programming (MINLP) method. Hence, the problem is completely formulated based on this method and is solved using available commercial solvers. The salient feature of this method is having potential to simultaneously determine the optimal location of multi UPFCs. Also, since a full AC Optimal Power... 

    Design of a fractional order PID controller for an AVR using particle swarm optimization

    , Article Control Engineering Practice ; Volume 17, Issue 12 , 2009 , Pages 1380-1387 ; 09670661 (ISSN) Zamani, M ; Karimi Ghartemani, M ; Sadati, N ; Parniani, M ; Sharif University of Technology
    Abstract
    Application of fractional order PID (FOPID) controller to an automatic voltage regulator (AVR) is presented and studied in this paper. An FOPID is a PID whose derivative and integral orders are fractional numbers rather than integers. Design stage of such a controller consists of determining five parameters. This paper employs particle swarm optimization (PSO) algorithm to carry out the aforementioned design procedure. PSO is an advanced search procedure that has proved to have very high efficiency. A novel cost function is defined to facilitate the control strategy over both the time-domain and the frequency-domain specifications. Comparisons are made with a PID controller and it is shown...