Loading...
Search for: electrochemical-impedance-spectroscopy
0.01 seconds
Total 177 records

    Modification of nanostructured anodized aluminum coatings by pulse current mode

    , Article Surface and Coatings Technology ; Volume 278 , 2015 , Pages 48-55 ; 02578972 (ISSN) Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, the effects of pulse current mode on corrosion resistance and mechanical properties of anodized coatings were explored. Thickness and hardness measurements, polarization and electrochemical impedance spectroscopy were employed to take mechanical and corrosion behaviors of the anodized coatings into consideration. Also, field-emission scanning electron microscopy (FE-SEM) was utilized to characterize the surface morphology of the coatings. It was shown that in short anodizing times, coating thickness is controlled by the heat concentrated on coating. Although at prolonged anodizing times, the coating thickness is affected by average current density. Hardness measurements showed... 

    The influence of pulse plating parameters on the electrocodeposition of Ni-TiO2 nanocomposite single layer and multilayer structures on copper substrates

    , Article Surface and Coatings Technology ; Volume 262 , 2015 , Pages 173-183 ; 02578972 (ISSN) Mohajeri, S ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from a Watts bath containing a TiO2 sol on copper substrates was investigated by different deposition techniques. Compared with direct current (DC) deposition, both pulse plating (PP) and pulse reverse plating (PRP) facilitated higher incorporations of TiO2 nanoparticles. Morphological studies conducted by scanning electron microscopy and field emission scanning electron microscopy revealed that the microstructure of the Ni-TiO2 nanocomposite coatings are affected both by pulse potentials and durations, indicating that higher incorporations of TiO2 nanoparticles refine the microstructure. The results... 

    Effects of zirconia content on characteristics and corrosion behavior of hydroxyapatite/ZrO2 biocomposite coatings codeposited by electrodeposition

    , Article Surface and Coatings Technology ; Volume 262 , January , 2015 , Pages 166-172 ; 02578972 (ISSN) Shojaee, P ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    HAp and HAp/ZrO2 composite coatings were successfully electrodepesited on 316L stainless steel substrates in the solutions containing ZrO2 particles at different concentrations. The effects of ZrO2 content on characteristics of the coatings were investigated using X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM) and bonding strength test. Polarization and electrochemical impedance spectroscopy measurements were carried out in order to evaluate corrosion behavior of the coatings. In-vitro test in SBF and further SEM observations were performed to examine bioactivity of the coatings. HAp/ZrO2 composite coatings showed better... 

    Electrochemical determination of CdS band edges and semiconducting parameters

    , Article Bulletin of the Chemical Society of Japan ; Volume 88, Issue 6 , February , 2015 , Pages 814-820 ; 00092673 (ISSN) Miandari, S ; Jafarian, M ; Mahjani, M. G ; Gobal, F ; Heidaripour, A ; Sharif University of Technology
    Chemical Society of Japan  2015
    Abstract
    Cadmium sulfide (CdS) thin film was electrodeposited on indium tin oxide (ITO) by chronoamperometry. The SEM images showed that hexagonal sheets of CdS deposited on the ITO surface. The X-ray diffraction (XRD) analysis confirmed this structure for CdS crystals and the average of crystalline size and the lattice constant parameters are approximately 39.54 and a = 0.4136, c = 0.6696 nm respectively. Photo-electrochemical investigations were performed by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) techniques. CdS band edges and density of states (DOS) were determined by CV technique. The band gap energy (Ebg) was measured... 

    Evaluation of the corrosion protection properties of an epoxy coating containing sol-gel surface modified nano-zirconia on mild steel

    , Article RSC Advances ; Volume 5, Issue 36 , Mar , 2015 , Pages 28769-28777 ; 20462069 (ISSN) Haddadi, S. A ; Mahdavian, M ; Karimi, E ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this study, the effect of surface modified nano-zirconia (nano-ZrO2) on the corrosion protection of epoxy coating on mild steel was investigated. An organosilane (trimethoxy methyl silane) was used as a surface modifier to improve the dispersability of the inorganic nanoparticles in the organic coating matrix. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterize the sol-gel surface modified nanoparticles. The dispersability of the modified and unmodified nano-zirconia in an epoxy coating was examined by field emission-scanning electron microscopy (FE-SEM). Electrochemical impedance spectroscopy (EIS) and salt spray were employed to... 

    Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process

    , Article Ceramics International ; Volume 42, Issue 7 , May , 2016 , Pages 8789–8797 ; 02728842 (ISSN) Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Plasma electrolytic oxidation (PEO) process was employed to create ceramic coatings on titanium substrate by using silicate-based electrolytes containing different concentrations of alumina nanoparticles (0, 3, 6, and 10. g/lit). The effect of alumina nanoparticles concentration on the morphology, chemical and phase composition of the PEO coatings was investigated by scanning electron microscope, energy dispersive spectrometer, and X-ray diffractometer, respectively.The corrosion behavior of samples was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. SEM, EDS, and XRD analyses illustrated that alumina nanoparticles incorporated into the... 

    Synthesis, characterization and performance determination of an Ag@Pt/C electrocatalyst for the ORR in a PEM fuel cell

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 45 , 2016 , Pages 20720-20730 ; 03603199 (ISSN) Esfandiari, A ; Kazemeini, M ; Bastani, D ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Ag@Pt nanoparticles synthesized with different Ag/Pt mass ratios utilizing ultrasonic treatment method. These materials were supported on Vulcan XC-72 and utilized as cathode in a proton exchange membrane fuel cell (PEMFC). The morphology of this material characterized through the x-ray diffraction (XRD), induced coupled plasma atomic emission spectroscopy (ICP-OES) as well as; high resolution transmission electron microscopy (HRTEM) techniques. To begin with, it was proven that, the prepared Ag@Pt/C catalyst possessed a core–shell nanostructure. The electrochemical properties of this material investigated through the Cyclic Voltammetry (CV), linear sweep voltammetry (LSV) and... 

    Impact of preparation method of TiO2-RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells

    , Article Electrochimica Acta ; Volume 219 , 2016 , Pages 38-48 ; 00134686 (ISSN) Nouri, E ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this work, a comparative study has been performed on two ex-situ and one in-situ doping of titania photoanodes with reduced graphene oxide. The presence of finely dispersed reduced graphene oxide facilitates electron transport and reduces electron-hole recombination resulting in a better performance of doped titania photoanodes. It was found that in-situ doping, i.e. introduction of graphene oxide in solution together with titania precursor was the most performant case of graphene doping. This result was obvious by studying dye-sensitized solar cells based on such doped photoanodes but was also and mainly analytically demonstrated by subjecting the obtained materials to characterization... 

    Sunlight driven photoelectrochemical light-to-electricity conversion of screen-printed surface nanostructured TiO2 decorated with plasmonic Au nanoparticles

    , Article Electrochimica Acta ; Volume 219 , 2016 , Pages 386-393 ; 00134686 (ISSN) Siavash Moakhar, R ; Masudy Panah, S ; Jalali, M ; Liang Goh, G. K ; Dolati, A ; Ghorbani, M ; Riahi Noori, N ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, we report a promising sunlight-driven screen-printed TiO2 porous nanorods (PNR) photoanode decorated with Au plasmonic nanostructures for photoelectrochemical (PEC) light-to-electricity conversion. Fabricated photoanodes were characterized using field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, X-Ray diffraction analysis, X-ray photoelectron spectroscopy, N2 adsorption-desorption isotherms, UV–vis spectroscopy and electrochemical impedance spectroscopy in detail. The Au-PNR-TiO2 photoanode demonstrates superior PEC activities both under simulated sunlight and visible light irradiation. Interestingly,... 

    Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings

    , Article Materials Chemistry and Physics ; Volume 183 , 2016 , Pages 490-498 ; 02540584 (ISSN) Mohammadi, I ; Ahmadi, Sh ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, the effects of pulse current parameters on corrosion resistance and mechanical properties of anodized coatings were evaluated. Hardness measurements, polarization and electrochemical impedance spectroscopy tests were employed to investigate the mechanical properties and corrosion behavior of these coatings. Also, field emission scanning electron microscopy (FE-SEM) was used to analyze the surface morphology and microstructure of the coatings. It was found that the properties of anodized coatings were dependent on various parameters, among which, time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were optimized. Analysis of Variance... 

    A low cost and highly active non-noble alloy electrocatalyst for hydrazine oxidation based on nickel ternary alloy at the surface of graphite electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 763 , 2016 , Pages 134-140 ; 15726657 (ISSN) Jafarian, M ; Rostami, T ; Mahjani, M. G ; Gobal, F ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The electrocatalytic oxidation of hydrazine was studied over Ni, Cu, Co and Ni-based ternary alloy on graphite electrodes in alkaline solution. The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and the catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of hydrazine, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a good catalytic activity for the oxidation of hydrazine at a reduced overpotential and it has a significant high... 

    A simple label-free electrochemical DNA biosensor based on carbon nanotube-DNA interaction

    , Article RSC Advances ; Volume 6, Issue 19 , 2016 , Pages 15592-15598 ; 20462069 (ISSN) Shahrokhian, S ; Salimian, R ; Kalhor, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A simple platform based on a hairpin oligonucleotide switch and multi-walled carbon nanotubes (MWCNTs) for the ultrasensitive detection of specific DNA sequences has been developed. In this approach, the π-stacking interaction of single-strand DNA-MWCNT was employed to construct an electrochemical DNA biosensor. Changes to the surface conductivity, based on the MWCNT replacement, were monitored by using the electrochemical species [Fe(CN)6]3-/4- as a redox probe. Morphological and voltammetric characterizations of the electrode surface were performed using atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), cyclic voltammetry (CV), differential pulse voltammetry (DPV) and... 

    A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells

    , Article Journal of Materials Chemistry A ; Volume 4, Issue 35 , 2016 , Pages 13488-13498 ; 20507488 (ISSN) Behrouznejad, F ; Shahbazi, S ; Taghavinia, N ; Wu, H. P ; Wei Guang Diau, E ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Organic-inorganic halide perovskite solar cells have attracted considerable interest due to their high efficiency and low fabrication cost. Au and Ag are usually used as the back contact metals but have limitations such as Au is too expensive and Ag is unstable. Here, Pt, Au, Ni, Cu, Cr and Ag were studied as the back contact electrodes for perovskite solar cells. We looked at how the work function of metals can affect their photovoltaic characteristics. The compositional and electrical characterizations were studied using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The general trend observed was that the shunt resistance and open-circuit voltage... 

    Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 57 , 2016 , Pages 51894-51899 ; 20462069 (ISSN) Eskandari, M ; Ghahary, R ; Shokri, M ; Ahmadi, V ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Copper sulfide deposited ZnO nanorods (ZnO NRs/CuS) have been applied as a new counter electrode material with high electrocatalytic activity towards polysulfide electrolyte, which results in the formation of a highly efficient counter electrode for QDSSCs. It was observed from the current density-voltage (J-V) characteristics that the short-circuit current density (Jsc), power conversion efficiency (PCE), and fill factor (FF) were enhanced from 7.63 mA cm-2 to 14.48 mA cm-2, 1.59% to 4.18%, and 0.29 to 0.38, respectively, when a bare CuS counter electrode was changed to a ZnO NRs/CuS counter electrode. Electrochemical impedance spectroscopy (EIS), Tafel polarization and cyclic voltammetry... 

    Au-Pd bimetallic nanoparticle electrodes for direct electroreduction of hexavalent chromium complexes

    , Article Australian Journal of Chemistry ; Volume 69, Issue 4 , 2016 , Pages 423-430 ; 00049425 (ISSN) Moakhar, R. S ; Hariri, M. B ; Kushwaha, A ; Dolati, A ; Ghorbani, M ; Goh, G. K. L ; Sharif University of Technology
    CSIRO  2016
    Abstract
    This paper reports a simple, low-cost, and effective electrochemical technique for sensing and reducing CrVI based on a Au-Pd bimetallic nanoparticle (BNP)-decorated indium tin oxide (ITO) conducting glass electrode. It was observed that the Au-Pd BNP-decorated ITO electrode could significantly boost the electrochemical reduction of CrVI when compared with either Au nanoparticle- or Pd nanoparticle-decorated ITO electrodes. These BNP-decorated electrodes exhibited a wide linear concentration range of 0.001-100 μM, a very low detection limit (signal-to-noise ratio = 3) of 0.3 nM, and a high sensitivity of 1.701 μA μM-1. From electrochemical impedance spectroscopy, it was revealed that this... 

    The effect of sol-gel surface modified silver nanoparticles on the protective properties of the epoxy coating

    , Article RSC Advances ; Volume 6, Issue 23 , 2016 , Pages 18996-19006 ; 20462069 (ISSN) Ghazizadeh, A ; Haddadi, S. A ; Mahdavian, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In this study, the effect of surface modified silver nanoparticles on the corrosion protection of an epoxy coating on mild steel was studied. An organosilane (3-methoxy silyl propyl metacrylate) was used as a surface modifier to increase the dispersability of the inorganic nanoparticles in the organic epoxy coating matrix. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterize the surface modified nanoparticles. Differential scanning colorimetry (DSC) was employed to study the effects of modified and unmodified nano-silver on the curing heat and glass transition temperature of the epoxy coatings. Salt spray and electrochemical impedance... 

    PH responsive Ce(III) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3

    , Article Progress in Organic Coatings ; Volume 99 , 2016 , Pages 197-209 ; 03009440 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Gonzalez Garcia, Y ; Terryn, H ; Mol, J. M. C ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Cerium nitrate loaded polyaniline (PANI) nanofibers were synthesized in this work via a chemical route. PANI nanofibers act as a host structure for the corrosion inhibitor, forming a Ce(III)-PANI complex. This complex is pH sensitive, and a change of pH can cause breaking of the complex and releasing of Ce(III). The Ce(III) loaded PANI nanofibers were embedded into epoxy ester coating and the self-healing corrosion protection ability was investigated by Scanning Vibrating Electrode Technique (SVET) and Electrochemical Impedance Spectroscopy (EIS). The results showed that by embedding of Ce(III) loaded PANI nanofibers into the coatings a superior corrosion protection and self-healing... 

    Simultaneous electrodeposition of reduced graphene oxide/ag nanoparticles as a sensitive layer for voltammetric determination of tinidazole

    , Article Nano ; Volume 12, Issue 6 , 2017 ; 17932920 (ISSN) Shahrokhian, S ; Navabi, M ; Mohammadi, R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    A stable composite film of silver nanoparticles (Ag NPs) decorated on reduced graphene oxide is prepared by a two-step simple procedure. The surface morphology of the modified electrode is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The electrochemical behavior of tinidazole (TNZ) on the surface of the modified electrode is investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The prepared composite electrode acts as a highly sensitive platform for the voltammetric determination of TNZ, leading to a significant increase in the reduction peak current of TNZ. The effects of experimental parameters such as the... 

    Corrosion behavior and microhardness of Ni-P-SiO2-Al2O3 nano-composite coatings on magnesium alloy

    , Article Journal of Materials Engineering and Performance ; Volume 26, Issue 5 , 2017 , Pages 2032-2039 ; 10599495 (ISSN) Sadreddini, S ; Rahemi Ardakani, S ; Rassaee, H ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of... 

    Effects of Fe2O3 content on ionic conductivity of Li2O-TiO2-P2O5 glasses and glass-ceramics

    , Article Materials Chemistry and Physics ; Volume 190 , 2017 , Pages 8-16 ; 02540584 (ISSN) Mohaghegh, E ; Nemati, A ; Eftekhari Yekta, B ; Banijamali, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this study, Li2O-TiO2-P2O5-x(Fe2O3) (x = 0, 2.5, 5 and 7.5 weight part) glass and glass-ceramics were synthesized through conventional melt-quenching method and subsequently heat treatment. Glass samples were studied by UV–visible spectroscopy and crystallized samples were characterized by differential thermal analysis, X-ray diffractometry and field emission scanning electron microscopy. Besides, electrical properties were examined according to the electrochemical impedance spectroscopy techniques. Experimental optical spectra of the Fe2O3-doped glasses revealed strong UV absorption band in the range of 330–370 nm, which were attributed to the presence of Fe3+ ions. The major crystalline...