Loading...
Search for: electrochemical-sensors
0.004 seconds
Total 33 records

    Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophene and folic acid

    , Article Applied Catalysis A: General ; Volume 378, Issue 2 , 2010 , Pages 195-201 ; 0926860X (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Sheikh Mohseni, M. A ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    In the present paper, the use of a carbon paste electrode modified by 2,2′-[1,2 buthanediylbis (nitriloethylidyne)]-bis-hydroquinone (BH) and TiO2 nanoparticles prepared by a simple and rapid method was described. The modified electrode showed an excellent character for electrocatalytic oxidization of norepinephrine (NE), acetaminophene (AC) and folic acid (FA). Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of NE, AC and FA has been explored at the modified electrode. Differential pulse voltammetry (DPV) peak currents of NE, AC and FA increased linearly with their concentration at the ranges of 4.0-1100.0 μM, 12.5-500.0 μM and 200.0-3200.0 μM,... 

    Development of a nanocellulose composite based voltammetric sensor for vitamin B9 analysis

    , Article Current Nanoscience ; Volume 12, Issue 4 , 2016 , Pages 493-499 ; 15734137 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Bentham Science Publishers B.V 
    Abstract
    As a B group vitamins, vitamin B9 is a Water-soluble vitamin which is produced by plants and microorganisms (bacteria and yeasts). Vitamin B9 plays an important role in the production of proteins and nucleic acids in body and also is one of the substances that prevents the development of neural tube defects in the fetus. Methods: Electrochemical behavior of vitamin B9 was studied using a potentiostat/galvanostat SAMA 500, electroanalyzer system, I. R. Iran. A three-electrode system was used, including a glassy carbon working electrode (d = 2.0 mm, purchased from Azar Electrode Co., Urmia, I.R. Iran), an Ag/AgCl (saturated KCl) reference electrode and a Pt wire auxiliary electrode.... 

    Numerical simulation of a microfluidic system for regular glucose measurement

    , Article 26th National and 4th International Iranian Conference on Biomedical Engineering, ICBME 2019, 27 November 2019 through 28 November 2019 ; 2019 , Pages 60-65 ; 9781728156637 (ISBN) Najmi, A ; Saidi, M. S ; Shahrokhian, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The aim of this research is to design an implantable integrated microfluidic system in order to regularly measure the glucose level in the human body, nonenzymatically, using the microdialysis method. The main compartments of this system are a micropump, array of hollow microneedles and an electrochemical sensor. At the base of the microneedles, there are located semipermeable membranes, that when the pumped dialysis fluid passes over them, the glucose of the interstitial fluid diffuses into the dialysis fluid and then, in the sensor section, it is measured nonenzymatically using the amperometry method. Both the arrangement of the miconeedles and the amount of the dialysis fluid flow are... 

    Advanced on-site glucose sensing platform based on a new architecture of free-standing hollow Cu(OH)2 nanotubes decorated with CoNi-LDH nanosheets on graphite screen-printed electrode

    , Article Nanoscale ; Volume 11, Issue 26 , 2019 , Pages 12655-12671 ; 20403364 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The planned design of nanocomposites combined with manageable production processes, which can offer controllability over the nanomaterial structure, promises the practical applications of functional nanomaterials. Hollow core-shell nanostructure architectures represent an emerging category of advanced functional nanomaterials, whose benefits derived from their notable properties may be hampered by complicated construction processes, especially in the sensing domain. In this regard, we designed a highly porous three-dimensional array of hierarchical hetero Cu(OH)2@CoNi-LDH core-shell nanotubes via a quick, very simple, green, and highly controllable three-step in situ method; they were... 

    Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection

    , Article ACS Applied Nano Materials ; Volume 2, Issue 4 , 2019 , Pages 2212-2221 ; 25740970 (ISSN) Hatamie, A ; Rahmati, R ; Rezvani, E ; Angizi, S ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Recently, three-dimensional carbon nanostructures have attracted significant attention for biosensing applications. We have prepared highly porous three-dimensional graphene (3DG) structures (90% porosity) by template-assisted chemical vapor deposition technique and enhanced their electrocatalytic activity through in situ electrochemical deposition of rose-like yttrium hexacyanoferrate particles on their struts. The 3DG structure has an average channel size of ∼500 μm, and the microflowers have lateral sizes in the range of 2-10 μm. The performance of the 3DG-based electrode in efficient detection of ascorbic acid was investigated after transferring on a gold screen printed electrode (SPE).... 

    Bimetallic CoZn-MOFs easily derived from CoZn-LDHs, as a suitable platform in fabrication of a non-enzymatic electrochemical sensor for detecting glucose in human fluids

    , Article Sensors and Actuators B: Chemical ; Volume 344 , 2021 ; 09254005 (ISSN) Ataei Kachouei, M ; Shahrokhian, S ; Ezzati, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the present study, an in-situ, two-step, highly controllable, fast, green, and facile strategy for fabricating the bimetallic cobalt-zinc-based metal-organic frameworks (MOFs) is employed for designing a non-enzymatic glucose sensing platform. The structural characterization, as well as the phase investigation of materials in each step, are assessed by X-ray diffraction, energy-dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. Furthermore, the electrocatalytic activity of the CoZn-BTC/GC fabricated electrode toward the electro-oxidation of glucose is examined by various electrochemical techniques,... 

    Facile electrochemical detection of morpholine in boiler water with carbon nanostructures: a comparative study of graphene and carbon nanotubes

    , Article Bulletin of Materials Science ; Volume 45, Issue 2 , 2022 ; 02504707 (ISSN) de Oliveira, S. M ; dos Santos Castro Assis, K. L ; Paiva, V. M ; Hashempour, M ; Bestetti, M ; de Araújo, J. R ; D’Elia, E ; Sharif University of Technology
    Springer  2022
    Abstract
    Two electrochemical sensors based on modified glassy carbon electrodes with carbon nanostructures as graphene (GCE–EG) and carbon nanotubes (GCE–CNT) were evaluated for morpholine analysis. The carbon nanostructures were obtained and characterized using X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and cyclic voltammetry. All spectroscopic and microscopic techniques confirmed the procurement of graphene and CNT. The electrochemical studies proved the efficient behaviour of both electrodes GCE–EG and GCE–CNT in sensing and detection of morpholine via differential pulse voltammetry.... 

    Glassy carbon electrode modified with a bilayer of multi-walled carbon nanotube and polypyrrole doped with new coccine: Application to the sensitive electrochemical determination of Sumatriptan

    , Article Electrochimica Acta ; Volume 56, Issue 27 , November , 2011 , Pages 10032-10038 ; 00134686 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Saberi, R. S ; Sharif University of Technology
    2011
    Abstract
    A promising electrochemical sensor was developed based on a layer by layer process by electro-polymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the multi-walled carbon nanotubes (MWCNTs) pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The electrochemical behavior of SUM was investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results showed a remarkable increase (∼12 times) in the anodic peak current of SUM in comparison to the bare GCE. The effect of experimental variables such... 

    Encapsulation of palladium nanoparticles by multiwall carbon nanotubes-graft-poly(citric acid) hybrid materials

    , Article Journal of Applied Polymer Science ; Volume 116, Issue 4 , 2010 , Pages 2188-2196 ; 00218995 (ISSN) Adeli, M ; Mehdipour, E ; Bavadi, M ; Sharif University of Technology
    2010
    Abstract
    Citric acid was polymerized onto the surface of functionalized multiwall carbon nanotubes (MWCNTCOOH) and MWCNT-graft-poly(citric acid) (MWCNTg-PCA) hybrid materials were obtained. Due to the grafted poly(citric acid) branches, MWCNT-g-PCA hybrid materials not only were soluble in water but also were able to trap water soluble metal ions. Reduction of trapped metal ions in the polymeric shell of MWCNT-g-PCA hybrid materials by reducing agents such as sodium borohydride led to encapsulated metal nanoparticles on the surface of MWCNT. Herein palladium nanoparticles were encapsulated and transported by MWCNT-g-PCA hybrid materials (MWCNT-g-PCA-EPN) and their application as nanocatalyst toward... 

    Electrochemical sensors based on functionalized carbon nanotubes modified with platinum nanoparticles for the detection of sulfide ions in aqueous media

    , Article Journal of Chemical Sciences ; Volume 131, Issue 3 , 2019 ; 09743626 (ISSN) Mohajeri, S ; Dolati, A ; Salmani Rezaie , S ; Sharif University of Technology
    Springer  2019
    Abstract
    Abstract : Vertically aligned carbon nanotube (CNT) arrays were synthesized by thermal chemical vapor deposition (CVD) on stainless steel substrates coated by cobalt nanoparticles as catalyst. Morphological and elemental analyses conducted by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that bamboo-like CNTs were blocked by Co nanoparticles at the tips. The fabricated nanotubes underwent functionalization by electrochemical oxidation in sulfuric acid, and the subsequent structural studies, as well as Fourier transform infrared (FTIR) spectroscopy confirmed that the tips of functionalized CNTs were opened while oxygenated functional groups were... 

    Electrochemical determination of naltrexone on the surface of glassy carbon electrode modified with Nafion-doped carbon nanoparticles: Application to determinations in pharmaceutical and clinical preparations

    , Article Journal of Electroanalytical Chemistry ; Volume 638, Issue 2 , 2010 , Pages 212-217 ; 15726657 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    Abstract
    A new sensitive and selective electrochemical sensor was developed for determination of naltrexone (NAL) in pharmaceutical dosage form and human plasma. Naltrexone is an opioid antagonist which is commonly used for the treatment of narcotic addiction and alcohol dependence. A voltammetric study of naltrexone has been carried out at the surface of glassy carbon electrode (GCE) modified with Nafion-doped carbon nanoparticles (CNPs). The electrochemical oxidation of naltrexone was investigated by cyclic and differential pulse voltammetric techniques. The dependence of peak currents and potentials on pH, concentration and the potential scan rate was investigated. The electrode characterization... 

    Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review

    , Article Biomedical Microdevices ; Volume 21, Issue 4 , 2019 ; 13872176 (ISSN) Ghasemi Toudeshkchoui, M ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity,... 

    Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes

    , Article Sensors and Actuators, B: Chemical ; Volume 133, Issue 2 , 12 August , 2008 , Pages 599-606 ; 09254005 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Bezaatpour, A ; Boghaei, D. M ; Sharif University of Technology
    2008
    Abstract
    The preparation and electrochemical performance of the carbon nanotube-paste electrode modified with salophen complexes of cobalt(III) perchlorate, with various substituents on the salophen ligand, as well as their electrocatalytic activity toward the oxidation of N-acetylcysteine (NAC) is investigated. Several Schiff base complexes containing various nucleophilic and electrophilic functional groups were prepared, and their electrochemical characteristics for the electro-oxidation of NAC were evaluated using cyclic and differential pulse voltammetry (CV and DPV). The results revealed, the modified electrodes show an efficient and selective electrocatalytic activity toward the anodic...