Loading...
Search for: electromagnetic-waves
0.013 seconds
Total 183 records

    Propagation and refraction of left-handed plasmons on a semiconducting substrate covered by graphene

    , Article Optics Letters ; Volume 43, Issue 9 , 2018 , Pages 2010-2013 ; 01469592 (ISSN) Zivari, A. P ; Bagheri, A. M ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    We show that a plasmonic semiconductor substrate can support highly confined surface plasmons when it is covered by a graphene layer. This occurs when the imaginary part of graphene conductivity and real part of the effective permittivity of the surrounding medium become simultaneously negative. Full-wave electromagnetic simulations demonstrate the occurrence of negative refraction and two-dimensional lensing at the interface separating regions supporting conventional right-handed graphene plasmons and left-handed surface plasmon polaritons. © 2018 Optical Society of America  

    Two-dimensional edge detection by guided mode resonant metasurface

    , Article IEEE Photonics Technology Letters ; Volume 30, Issue 9 , 1 May , 2018 , Pages 853-856 ; 10411135 (ISSN) Saba, A ; Tavakol, M. R ; Karimi Khoozani, P ; Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this letter, a new approach to perform edge detection is presented using an all-dielectric complimentary metal-oxide-semiconductor-compatible metasurface. Our design is based on the guided-mode resonance, which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure is easy to fabricate, and it can be exploited for detection of edges in two dimensions due to its symmetry. In addition, a tradeoff between gain and the resolution of edge detection is discussed, which can be adjusted using appropriate design parameters. The proposed edge detector potentially can be used in ultrafast analog computing and image processing. ©... 

    Use of delay and sum for sparse reconstruction improvement for structural health monitoring

    , Article Journal of Intelligent Material Systems and Structures ; Volume 30, Issue 18-19 , 2019 , Pages 2919-2931 ; 1045389X (ISSN) Nokhbatolfoghahai, A ; Navazi, H. M ; Groves, R. M ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    To perform active structural health monitoring, guided Lamb waves for damage detection have recently gained extensive attention. Many algorithms are used for damage detection with guided waves and among them, the delay-and-sum method is the most commonly used algorithm because of its robustness and simplicity. However, delay-and-sum images tend to have poor accuracy with a large spot size and a high noise floor, especially in the presence of multiple damages. To overcome these problems, another method that is based on sparse reconstruction can be used. Although the images produced by the sparse reconstruction method are superior to the conventional delay-and-sum method, it has the challenges... 

    Distribution grid flexibility-ramp minimization using local resources

    , Article 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019, 29 September 2019 through 2 October 2019 ; 2019 ; 9781538682180 (ISBN) Fattaheian Dehkordi, S ; Tavakkoli, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Increasing rate of renewable energy sources (RESs) integration in the distribution system and development of multi-microgrids (MMG) structures have changed the operational condition of power grids. In this context, the stochastic and intermittent nature of the RESs has increased the need for ramp up power to balance the supply and demand when electricity generation of these resources drops. Moreover, bulk power generation units, which conventionally have the possibility to provide flexibility ramp, would face lack of financial justification for expansion and operation in a system with high rate penetration of RESs. Therefore, distribution system operators (DSOs) should rely on local... 

    Optomechanical heat transfer between molecules in a nanoplasmonic cavity

    , Article Physical Review A ; Volume 100, Issue 1 , 2019 ; 24699926 (ISSN) Ashrafi, S. M ; Malekfar, R ; Bahrampour, A. R ; Feist, J ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    We explore whether localized surface plasmon polariton modes can transfer heat between molecules placed in the hot spot of a nanoplasmonic cavity through optomechanical interaction with the molecular vibrations. We demonstrate that external driving of the plasmon resonance indeed induces an effective molecule-molecule interaction corresponding to a heat transfer mechanism that can even be more effective in cooling the hotter molecule than its heating due to the vibrational pumping by the plasmon. This mechanism allows us to actively control the rate of heat flow between molecules through the intensity and frequency of the driving laser. © 2019 American Physical Society  

    Achieving subwavelength field confinement in sub-terahertz regime by periodic metallodielectric waveguides

    , Article Optics Express ; Volume 27, Issue 4 , 2019 , Pages 4226-4237 ; 10944087 (ISSN) Tehranian, A ; Ahmadi Boroujeni, M ; Abbaszadeh, A ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    In this paper, we report on a periodic metallo-dielectric structure that supports geometry-induced surface plasmons in the sub-terahertz regime. The proposed structure is made up of a dielectric-coated metallic grating sandwiched by parallel metal plates. Based on the modal analysis of 2D and 3D structures, the impact of a metal cladding and a customized dielectric coating on the dispersion relation and field distribution of the guided surface wave is investigated. It is found that modal field confinement is improved in the presence of a metal cladding without narrowing the operational bandwidth of the waveguide. Moreover, a customized subwavelength-sized dielectric coating based on... 

    Achieving subwavelength field confinement in sub-terahertz regime by periodic metallodielectric waveguides

    , Article Optics Express ; Volume 27, Issue 4 , 2019 , Pages 4226-4237 ; 10944087 (ISSN) Tehranian, A ; Ahmadi Boroujeni, M ; Abbaszadeh, A ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    In this paper, we report on a periodic metallo-dielectric structure that supports geometry-induced surface plasmons in the sub-terahertz regime. The proposed structure is made up of a dielectric-coated metallic grating sandwiched by parallel metal plates. Based on the modal analysis of 2D and 3D structures, the impact of a metal cladding and a customized dielectric coating on the dispersion relation and field distribution of the guided surface wave is investigated. It is found that modal field confinement is improved in the presence of a metal cladding without narrowing the operational bandwidth of the waveguide. Moreover, a customized subwavelength-sized dielectric coating based on... 

    An optimal architecture of magneto-plasmonic core-shell nanoparticles for potential photothermal applications

    , Article Physical Chemistry Chemical Physics ; Volume 22, Issue 25 , 2020 , Pages 14318-14328 Hadilou, N ; Souri, S ; Navid, H. A ; Sadighi Bonabi, R ; Anvari, A ; Palpant, B ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    In this work, the optical responses of Fe3O4@Au and Fe3O4@Ag are comprehensively investigated using the discrete dipole approximation. It is found that the resonance wavelength and absorption efficiency strongly depend on the composition of the core and shell, geometry of the nanoparticles, core to particle volume ratio, core radius and shell thickness. The strongest impact is due to the shell material, the shape of the nanoparticles and their combination. When the composition of the shell is changed from gold to silver, instead of one fundamental resonance peak the absorption spectrum shows two, corresponding to the bonding plasmon mode at the nanoparticle-environment interface and... 

    Spoof surface plasmon analysis based on Marcatili's method

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 37, Issue 11 , 2020 , Pages 326-3267 Khosrovani Moghaddam, M. A ; Shishegar, A. A ; Sharif University of Technology
    OSA-The Optical Society  2020
    Abstract
    Motivated by surface plasmon polariton waveguides in the optical regime, spoof surface plasmon (SSP) waveguides have received a lot of attention in terahertz and millimeter wave frequencies.Most research on these kinds of waveguides is numerical. However, some limited analytical work can be seen in the literature. In this paper, one type of SSP waveguide that is composed of a rectangular corrugation with finite lateral width on the ground is considered, and an analytical method, which is inspired byMarcatili's method, is proposed in order to calculate the dispersion curve of the first mode. The results of this analytical method and a numerical commercial eigenmode solver are compared. The... 

    Towards developing efficient metalloporphyrin-based hybrid photocatalysts for CO2reduction; an: ab initio study

    , Article Physical Chemistry Chemical Physics ; Volume 22, Issue 40 , 2020 , Pages 23128-23140 Ostovan, A ; Papior, N ; Zahedi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    A series of thiophene-based donor-acceptor-donor (D-A-D) oligomer substituted metalloporphyrins (MPors) with different 3d central metal-ions (M = Co, Ni, Cu, and Zn) were systematically investigated to screen efficient hybrid photocatalysts for CO2 reduction based on density functional theory (DFT) and time-dependent DFT simulations. Compared with base MPors, the newly designed hybrid photocatalysts have a lower bandgap energy, stronger and broader absorption spectra, and enhanced intermolecular charge transfer, exciton lifetime, and light-harvesting efficiency. Then, the introduction of D-A-D electron donor (ED) groups into the meso-positions of MPors is a promising method for the... 

    An efficient approach toward guided mode extraction in two-dimensional photonic crystals

    , Article Optics Communications ; Volume 281, Issue 10 , 2008 , Pages 2826-2833 ; 00304018 (ISSN) Sarrafi, P ; Naqavi, A ; Mehrany, K ; Khorasani, S ; Rashidian, B ; Sharif University of Technology
    2008
    Abstract
    A rigorous, fast and efficient method is proposed for analytical extraction of guided defect modes in two-dimensional photonic crystals, where each Bloch spatial harmonic is expanded in terms of Hermite-Gauss functions. This expansion, after being substituted in Maxwell's equations, is analytically projected in the Hilbert space spanned by the Hermite-Gauss basis functions, and then a new set of first order coupled linear ordinary differential equations with non-constant coefficients is obtained. This set of equations is solved by employing successive differential transfer matrices, whereupon defect modes, i.e. the guided modes propagating in the straight line-defect photonic crystal... 

    Electromagnetic behaviour of nano plasmonic layer

    , Article Photonics North 2006, Quebec City, QB, 5 June 2006 through 8 June 2006 ; Volume 6343 II , 2006 ; 0277786X (ISSN) ; 0819464287 (ISBN); 9780819464286 (ISBN) Mehrany, K ; Rashidian, B ; Chamanzar, M ; Sharif University of Technology
    2006
    Abstract
    Recently, interaction of electromagnetic waves with conducting interfaces has been studied and several applications have been proposed. For instance, new type of photonic crystals similar to Kronig-Penny electronic crystals has been implemented by using these structures. In these structures a free two dimensional interface charge layer is generated at the dielectric interfaces and interesting phenomena are observed. In this manuscript, the effect of finite charge layer thickness and its asymptotic behavior toward conducting interface, where the thin charge layer is modelled via a surface conductivity σs, is numerically studied for the first time. Two different regimes are considered: first,... 

    Semiconducting layer as an attractive PD detection sensor of XLPE cables

    , Article IEEE Transactions on Dielectrics and Electrical Insulation ; Volume 13, Issue 4 , 2006 , Pages 885-891 ; 10709878 (ISSN) Vakilian, M ; Blackburn, T. R ; James, R. E ; Toan Phung, B ; Sharif University of Technology
    2006
    Abstract
    Online monitoring of high voltage (HV) cross linked polyethylene (XLPE) cables is a major requirement and interest of utilities for reliable operation of underground cables. Although XLPE cables have a relatively reliable insulation system, however since its insulating material is less resistant to partial discharges (PD), the failure risk increases significantly after occurrence of any partial discharge. Therefore sensitive sensors and a reliable detection system are required for an effective cable life management. Due to attenuation effects of semiconducting layers of XLPE cables on high frequency components of partial discharge signal, the detection process is easily distorted with... 

    Microwave absorption characteristics of polyaniline@Ba0.5Sr0.5Fe12O19@MWCNTs nanocomposite in X-band frequency

    , Article Journal of Magnetism and Magnetic Materials ; Volume 524 , 2021 ; 03048853 (ISSN) Cao, Y ; Mustafa Mohamed, A ; Sharifi, A ; Niaz Akhtar, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this research, polyaniline@Ba0.5Sr0.5Fe12O19@MWCNTs nanocomposite was prepared via co-precipitation and in-situ polymerization methods, respectively. Microstructural, magnetic and electromagnetic wave absorption analysis of the prepared nanocomposite were studied via XRD, FESEM, VSM and VNA. Compared with Ba0.5Sr0.5Fe12O19@MWCNTs, the microwave absorption bandwidth of the coated nanocompoite with polyaniline was significantly enhanced, which increased to approxiamately 4 GHz from 3 GHz. The effective microwave absorption performance of the Ba0.5Sr0.5Fe12O19@MWCNTs nanocomposite was attributed to increase in the interfacial polarization, improvement in impedance matching as well as porous... 

    Flexibility-based operational management of a microgrid considering interaction with gas grid

    , Article IET Generation, Transmission and Distribution ; Volume 15, Issue 19 , 2021 , Pages 2673-2683 ; 17518687 (ISSN) Kamrani, F ; Fattaheian Dehkordi, S ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Power systems have been undergoing significant restructuring as a result of increasing independently operated local resources. Consequently, new entities, i.e. microgrids (MGs), are developed, which facilitate the integration of local resources, specifically renewable energy sources (RESs), into the operation of power systems. Despite many benefits, the integration of RESs could cause severe rampings in the net-load, which would challenge the reliable operation of the system. Therefore, it seems essential that flexible local resources in an MG should be employed to provide flexibility services to the main grid, thus ensuring that ramping in the MG's net-load would meet the ramping capability... 

    A two-stage flexibility-oriented stochastic energy management strategy for multi-microgrids considering interaction with gas grid

    , Article IEEE Transactions on Engineering Management ; 2021 ; 00189391 (ISSN) Kamrani, F ; Fattaheian Dehkordi, S ; Gholami, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Introduction of renewable energy sources (RESs) and independently operated multi-microgrid (MMG) systems have led to new issues in the management of power systems. In this context, uncertainty associated with RESs as well as intense ramps inflicted on the network called system flexibility constraints have raised new challenges in power systems. The new condition necessitates the implementation of novel frameworks that enable local system operators to efficiently manage the available resources to cope with the flexibility-ramp constraints. Moreover, the new framework should facilitate energy management in a system with an MMG structure considering uncertainty of RESs. Consequently, in this... 

    Wideband and multi-band frequency selective surfaces for microwave shielding

    , Article 29th Iranian Conference on Electrical Engineering, ICEE 2021, 18 May 2021 through 20 May 2021 ; 2021 , Pages 836-842 ; 9781665433655 (ISBN) Marzban, M. R ; Alighanbari, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Monolayer band-reject frequency selective surfaces (FSS) based on curved coupled microstrip line (CCML) resonators are proposed. Each unit cell comprises a single- or multi-loop CCML resonator, featuring single-wideband or multi-band resonance, respectively. Design guidelines for achieving various responses are demonstrated and it is shown there is a great flexibility attaining desired frequency responses versus structural parameters. For instance, it is shown that the entire microwave X-band may be rejected, using a simple single-loop structure. The FSS is particularly useful for protecting buildings against parasitic microwave signals. A visual transparency factor for the FSS, when regular... 

    A simulation case study of THz reflection spectroscopy

    , Article 29th Iranian Conference on Electrical Engineering, ICEE 2021, 18 May 2021 through 20 May 2021 ; 2021 , Pages 788-792 ; 9781665433655 (ISBN) Mirsalehi, M ; Kavehvash, Z ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We have modelled and simulated a simple THz spectroscopic system to identify materials. A Vivaldi antenna with suitable specifications was used as a transmitter in the simulation. In order to characterize the object, we applied two different methods based on the derivative of the reflectivity and the Kramers-Kronig relations. Also, to obtain the optimized incident angle, we calculated the reflection sensitivity of the sample to the angle of incidence using the Fresnel equations and verified our result by simulation. © 2021 IEEE  

    A clearing mechanism for joint energy and ancillary services in non-convex markets considering high penetration of renewable energy sources

    , Article International Journal of Electrical Power and Energy Systems ; Volume 129 , July , 2021 ; 01420615 (ISSN) Goudarzi, H ; Rayati, M ; sheikhi, A ; Ranjbar, A. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper introduces a day-ahead clearing model for the simultaneous energy and ancillary services market in high penetration of renewable energy sources (RESs) considering fast-start generators’ behaviors as non-spinning reserve providers. For managing the uncertainties of RESs, the system operator takes the advantages of the stochastic model of security-constrained unit commitment (SCUC) problem considering plausible scenarios. The non-convexities due to the startup costs, minimum power outputs, and commitment variables make the stochastic SCUC problem and market-clearing non-convex. Meanwhile, with traditional market-clearing methods for energy and ancillary services based on marginal... 

    Modal transmission-line theory of optical waveguides

    , Article Journal of Electromagnetic Waves and Applications ; Volume 19, Issue 7 , 2005 , Pages 891-906 ; 09205071 (ISSN) Dabirian, A ; Akbari, M ; Sharif University of Technology
    2005
    Abstract
    In this paper, we describe a vectorial and analytical technique, based on modal transmission-line theory, for solving guided modes of arbitrary shaped cylindrical optical waveguides. The waveguide materials can be either transparent or absorbing. In this technique, mode solving is approached by periodic repetition of the waveguide and using modal transmission-line theory. Pertinent information about guided modes of the waveguide is extracted from transmission-line features. Two examples illustrate the utilization of this technique for analysis of optical waveguides