Loading...
Search for: embedded-system
0.008 seconds
Total 227 records

    Spring hydrograph simulation of karstic aquifers: impacts of variable recharge area, intermediate storage and memory effects

    , Article Journal of Hydrology ; Volume 552 , 2017 , Pages 225-240 ; 00221694 (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    A simple conceptual rainfall–runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model... 

    A semi-active SMA-MRF structural stability element for seismic control in marine structures

    , Article Applied Ocean Research ; Volume 100 , 2020 Zareie, S ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The stability and integrity of structures under indeterminant external loadings, particularly earthquakes, is a vital issue for the design and safe operation of marine and offshore structures. Over the past decades, many structural control systems, such as viscous-based systems, have been developed and embedded in marine and offshore structures, particularly oil platforms to maintain the stability and mitigate the seismic hazards. Rapid improvement in intelligent materials, including shape memory alloys (SMAs) and Magnetorheological fluid (MRF), have led to the design and development of efficient structural control elements. The present work aims to establish a framework for the structural... 

    BOT-MICS: Bounding time using analytics in mixed-criticality systems

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; 2021 ; 02780070 (ISSN) Ranjbar, B ; Hosseinghorban, A ; Sahoo, S. S ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    An increasing trend for reducing cost, space, and weight leads to modern embedded systems that execute multiple tasks with different criticality levels on a common hardware platform while guaranteeing a safe operation. In such Mixed-Criticality (MC) systems, multiple Worst-Case Execution Times (WCETs) are defined for each task, corresponding to system operation mode to improve the MC system’s timing behavior at run-time. Determining the appropriate WCETs for lower criticality modes is non-trivial. On the one hand, considering a very low WCET for tasks can improve the processor utilization by scheduling more tasks in that mode, on the other hand, using a larger WCET ensures that the mode... 

    ECG classification algorithm based on STDP and R-STDP neural networks for real-time monitoring on ultra low-power personal wearable devices

    , Article IEEE Transactions on Biomedical Circuits and Systems ; Volume 13, Issue 6 , 2021 , Pages 1483-1493 ; 19324545 (ISSN) Amirshahi, A ; Hashemi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper presents a novel ECG classification algorithm for inclusion as part of real-time cardiac monitoring systems in ultra low-power wearable devices. The proposed solution is based on spiking neural networks which are the third generation of neural networks. In specific, we employ spike-timing dependent plasticity (STDP), and reward-modulated STDP (R-STDP), in which the model weights are trained according to the timings of spike signals, and reward or punishment signals. Experiments show that the proposed solution is suitable for real-time operation, achieves comparable accuracy with respect to previous methods, and more importantly, its energy consumption in real-time classification... 

    BOT-MICS: Bounding time using analytics in mixed-criticality systems

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 41, Issue 10 , 2022 , Pages 3239-3251 ; 02780070 (ISSN) Ranjbar, B ; Hosseinghorban, A ; Sahoo, S. S ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    An increasing trend for reducing cost, space, and weight leads to modern embedded systems that execute multiple tasks with different criticality levels on a common hardware platform while guaranteeing a safe operation. In such mixed-criticality (MC) systems, multiple worst case execution times (WCETs) are defined for each task, corresponding to the system operation mode to improve the MC system's timing behavior at runtime. Determining the appropriate WCETs for lower criticality (LC) modes is nontrivial. On the one hand, considering a very low WCET for tasks can improve the processor utilization by scheduling more tasks in that mode, on the other hand, using a larger WCET ensures that the... 

    Efficient genetic based topological mapping using analytical models for on-chip networks

    , Article Journal of Computer and System Sciences ; Volume 79, Issue 4 , 2013 , Pages 492-513 ; 00220000 (ISSN) Arjomand, M ; Amiri, S. H ; Sarbazi Azad, H ; Sharif University of Technology
    2013
    Abstract
    Network-on-Chips are now the popular communication medium to support inter-IP communications in complex on-chip systems with tens to hundreds IP cores. Higher scalability (compared to the traditional shared bus and point-to-point interconnects), throughput, and reliability are among the most important advantages of NoCs. Moreover, NoCs can well match current CAD methodologies mainly relying on modular and reusable structures with regularity of structural pattern. However, since NoCs are resource-limited, determining how to distribute application load over limited on-chip resources (e.g. switches, buffers, virtual channels, and wires) in order to improve the metrics of interest and satisfy... 

    Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant

    , Article Solar Energy ; Volume 153 , 2017 , Pages 153-172 ; 0038092X (ISSN) Mostafavi Tehrani, S. S ; Taylor, R. A ; Nithyanandam, K ; Shafiei Ghazani, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study conducts a comprehensive comparative techno-economic analysis of some near-term sensible thermal energy storage (TES) alternatives to the ‘standard’ two-tank molten salt system for concentrated solar power (CSP) plants. As such, we conducted detailed, relative annual transient simulations for single-medium thermocline (SMT), dual-media thermocline (DMT), and shell-and-tube (ST) systems. To be consistent with recent literature, the DMT and ST systems use concrete with a porosity of 0.2 (e.g. where concrete occupies 80% of the system) as their low cost filler material. The systems were integrated into a validated 19.9 MWe Gemasolar CSP model, which has a solar multiple of...