Loading...
Search for: exergy
0.006 seconds
Total 163 records

    Exergy analysis of Airlift Systems: Experimental approach

    , Article International Journal of Exergy ; Volume 8, Issue 4 , 2011 , Pages 407-424 ; 17428297 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Airlift Systems (ALS) are widely used in various industrial applications. As the main part of the flow through ALS's upriser pipe, is formed by gas-liquid flow, the analysis of such systems will be accompanied by problems of two-phase flow modelling. Several effective variables are involved in ALS; thereupon comprehensive method is needed to consider these parameters. Exergy analysis can be considered as a simple solution for the realisation of the preferred domain of ALS's operation. Here, this method has been proposed to examine the performance of ALS. Based on thermodynamic principles, an analytical model has been implemented in each phase and the respective experimental data have been... 

    Improvement of airlift pump performance based on the exergy analysis

    , Article Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010, 14 June 2010 through 17 June 2010, Lausanne ; Volume 1 , 2010 , Pages 489-497 ; 9781456303006 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Gholampour, P ; Shams, H ; Saidi, M. H ; Sharif University of Technology
    Aabo Akademi University  2010
    Abstract
    Airlift systems (ALS) are widely used in various fields such as petroleum and oil extracting industries. As gas-liquid two phase flow is the main part of the flow through these systems, the analysis of such systems accompanies with problems of two phase flow modeling. However, exergy analysis could be a simple method for modeling of airlift systems. In the present study, an analytical model based on thermodynamic principles has been implemented on each phase to analyze the performance of airlift systems. The experimental data were collected at a large scale multiphase flow test rig for the airlift pump with 6m height and diameter of 50 mm. Finally, irreversibility terms, energy destruction,... 

    A new biogas-fueled bi-evaporator electricity/cooling cogeneration system: Exergoeconomic optimization

    , Article Energy Conversion and Management ; Volume 196 , 2019 , Pages 1193-1207 ; 01968904 (ISSN) Gholizadeh, T ; Vajdi, M ; Rostamzadeh, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    An innovative bi-evaporator electricity/cooling cogeneration system fueled by biogas is introduced. The plausibility of the introduced integrated power plant is examined from thermodynamic and economic vantage points. Later, single- and multi-objective optimization of the reckoned system are achieved by selecting appropriate parameters as decision variables and thermal and exergy efficiencies and total unit product cost (TUPC) of the system as objective functions. Four optimum modes of thermal efficiency optimum design (TEOD), exergy efficiency optimum design (EEOD), cost optimum design (COD), and multi-objective optimum design (MOOD) are selected for optimization and the attained results... 

    Energy and exergy analysis of intensified condensate stabilization unit with water draw pan

    , Article Applied Thermal Engineering ; Volume 155 , 2019 , Pages 49-58 ; 13594311 (ISSN) Tavan, Y ; Hosseini, S. H ; Ahmadi, G ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    An industrial condensate stabilizer unit is simulated with HYSYS 3.1 software when the excessive water is present on the trays. Effects of reboiler temperature, excess water flow rate, and incoming stream temperature on the Reid vapor pressure (RVP), temperature distribution along the column and impurity concentrations along the stabilization column, as well as, energy usage are studied. In addition, the optimal location for the water draw tray for the condensate stabilizer column is found. It is observed that the presence of water draw pan in the column leads to about 15% and 28% reduction, respectively, in the reboiler and the compressor duties compared to the industrial case without water... 

    Thermal-exergetic behavior of triangular vortex generators through the cylindrical tubes

    , Article International Journal of Heat and Mass Transfer ; Volume 151 , 2020 Pourhedayat, S ; Pesteei, S. M ; Ebrahimi Ghalinghie, H ; Hashemian, M ; Aqeel Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, new arrangements of triangular winglet as a turbulator are numerically studied through a cylindrical tube. Triangular winglets are commonly placed on one side of a rectangular plate and inserted inside the tube. However, in present work, the winglets are located on both sides of the rectangular plate to further enhance the thermal performance of the fluid flow through the tube. Both backward and forward configurations of the winglets are analysed. Moreover, despite the importance of “latitudinal pitch of the winglets” and “winglet-plate angle” no investigation has been evaluated these parameters which will be evaluated in this work. Moreover, as no exergetic evaluation has... 

    An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches

    , Article Journal of Cleaner Production ; 2020 Salari, A ; Taheri, A ; Farzanehnia, A ; Passandideh fard, M ; Sardarabadi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    One of the most prominent hybrid solar devices is the photovoltaic thermal system (PVTS), which is able to provide simultaneous electricity and thermal energy. The thermal energy is the heat absorbed by the photovoltaic (PV) module and transferred to the attached thermal collector and finally to the heat transfer fluid. Utilizing a proper heat transfer fluid is an effective means to increase in obtained thermal and electrical powers and enhance PV thermal management. Over the past decade, employing nanofluids thanks to their superior thermophysical properties became a proved strategy to improve the efficiency of the PVTS. This paper covers cutting-edge researches on nanofluid-based PVTS via... 

    Optimal detailed design and performance assessment of natural gas pressure reduction stations system equipped with variable inlet guide vane radial turbo-expander for energy recovery

    , Article Journal of Natural Gas Science and Engineering ; Volume 96 , 2021 ; 18755100 (ISSN) Ebrahimi Saryazdi, S. M ; Rezaei, F ; Saboohi, Y ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The turbo-expander system is utilized instead of the pressure regulator to avoid exergy destruction occurring in gas pressure reduction systems. However, due to the variation of natural gas input conditions such as mass flow rate, the sustainable performance of this technology is challenging. In this study, at first, the optimal system design of gas pressure reducing station equipped with radial expansion turbine is performed. It is based on economic and exergy analyses as well as considering geometric, fluid, thermodynamic constraints of components and the systematic constraints. To do so, detailed design models of main components including mean-line design model of radial turbine,... 

    Multi-objective optimal design of gas-fired heater based on modified design model of fired heater taking into account exergy, economic and environmental factors

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 34, Issue 7 , 2021 , Pages 1785-1798 ; 17281431 (ISSN) Ebrahimi Saryazdi, S. M ; Rezaei, F ; Saboohi, Y ; Sassani, F ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    Heaters are one of the central parts of natural gas reduction stations using turboexpanders to prevent the formation of hydrate and corrosion failure. This study intends to design a fired heater by applying a combustion sub-model to derive an optimal model for this kind of application. This model is developed to accurately consider all subsections of the fired heater namely radiation, convection, and shield sections, as well as flue gas composition, and its volume. Within this context, a multi-objective optimization is employed to identify the optimal design of the gas-fired heater in the natural gas reduction station for the Ramin power plant case study. The total economic and environmental... 

    Indirect mechanical heat pump assisted humidification-dehumidification desalination systems

    , Article International Journal of Energy Research ; Volume 45, Issue 11 , 2021 , Pages 15892-15920 ; 0363907X (ISSN) Rostamzadeh, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this study, four new indirect heat pump assisted mechanical vapor compression humidification-dehumidification (HDH) systems are proposed and their superiorities over the reference system are demonstrated from thermodynamics and thermoeconomics viewpoints. The proposed models are configured based on an HDH unit and a simple cascade heat pump, an HDH unit and a heat pump with an ejector, an HDH unit and a cascade heat pump with an ejector, and an HDH unit and a vapor injection heat pump. Although employing a heat pump with cascade and ejector configurations improved gain-output-ratio (GOR) and specific power consumption (SPC) values in comparison with the base system, the performance... 

    A comparative study on bifacial photovoltaic/thermal modules with various cooling methods

    , Article Energy Conversion and Management ; Volume 263 , 2022 ; 01968904 (ISSN) Ma, T ; Kazemian, A ; Habibollahzade, A ; Salari, A ; Gu, W ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The bifacial photovoltaic/thermal module is an emerging concept that can provide electricity and heat simultaneously, taking advantage of both front and rear sides of the panel; therefore, exhibiting a better performance compared to a conventional photovoltaic module or photovoltaic thermal module. In this study, four configurations of the bifacial photovoltaic/thermal module with different cooling methods have been proposed, i.e., cooling performed at either the upper or the lower surface, in parallel (applied to both upper and lower surfaces having similar start/endpoints), and swinging air back and forth (by guiding the air over the upper and lower surfaces, respectively). The... 

    Analysis of Chemical Looping Combustion (CLC)Systems Combined with CO2 Separation

    , M.Sc. Thesis Sharif University of Technology Motevally, Rohollah (Author) ; Soltanieh, Mohammad (Supervisor) ; Panjeshahi, Mohammad Hassan (Supervisor)
    Abstract
    One of the most important environmental problem across the world is global warming due to increase in greenhouse gas concentration in atmosphere. The main objective of this thesis is to try to find some ways that lead to stop or decrease, increasing trend in greenhouse gas emission, espicialy CO2. The investigation of the sources of emission of CO2 and proposed methods to decrease the rate of the emission, reveals that sepration of CO¬2 from combustion products and its storage is the only promising solution of this problem. The common feature of all propsed methods for elimination of CO¬¬2 from combustion gas, is the presence of a separation step. The addition of this separation step to... 

    Exergy and Thermoeconomic Analysis of a Hybrid System of Desalination and CCHP, Augmented by Solar Energy

    , Ph.D. Dissertation Sharif University of Technology Saraei, Alireza (Author) ; Abbaspour Tehrani Fard, Majid (Supervisor)
    Abstract
    The demand in water and energy for household, industrial and agricultural uses continue to grow. In recent years, many researches have been done on thermodynamic assessment and optimization of Combined Cooling, Heating and Power (CCHP) and desalination systems. The interesting and important point is the potential of combining CCHP and desalination systems by employing the solar power. The purpose of this study is exergy analysis and thermoeconomic optimization of a hybrid system of Multi-Effects Distillation desalination (MED) and CCHP, augmented by solar energy. The thermoeconomic analysis is carried out by Total Revenue Requirement (TRR) method. Properties of working fluid in hybrid MED... 

    Thermodynamic analysis of a hybrid gas turbine/thermoacoustic heat pump/refrigeration engine

    , Article International Journal of Exergy ; Volume 15, Issue 2 , 1 November , 2014 , Pages 152-170 ; ISSN: 17428297 Ghorbanian, K ; Karimi, M ; Sharif University of Technology
    Abstract
    Possible performance enhancement of small gas turbine power plants through the application of thermoacoustic systems is examined. The thermoacoustic subsystem is powered only by the waste heat of the gas turbine. Two different gas turbine configurations are considered: a Thermoacoustic refrigerator assisted gas turbine (TRG) and a Combined thermoacoustic heat pump and refrigeration assisted gas turbine (CTHRG). Exergy, rational efficiency and relative power gain (RPG) of these configurations are compared with those from the recuperated gas turbine engine. The results indicate that the integration of thermoacoustic system to a simple gas turbine cycle will not only enhance the energy/exergy... 

    Second law based analysis of supplementary firing effects on the Heat Recovery Steam Generator in a combined cycle power plant

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 1 , 2010 , Pages 201-209 ; 9780791849156 (ISBN) Karrabi, H ; Rasoulipour, S ; Sharif University of Technology
    2010
    Abstract
    The supplementary firing is one of the techniques which are used to increase the output power of the combined cycle power plants (CCPP). The low construction cost per generated power encourages designers to consider it in the new CCPP. In this paper the thermal and exergy analyses of HRSG for various operating conditions in variation of loads and variation of ambient temperature carried out. They are based on the performance test data at different operating conditions. The objective of these analyses is to present the effects of supplementary firing on gross power output, combined cycle efficiency and the exergy loss in Heat Recovery Steam Generator (HRSG) devices at different ambient... 

    Thermodynamic analysis of different configurations for microturbine cycles in simple and cogeneration systems

    , Article 2006 ASME 51st Turbo Expo, Barcelona, 6 May 2006 through 11 May 2006 ; Volume 5 PART A , 2006 , Pages 247-255 ; 0791842401 (ISBN); 9780791842409 (ISBN) Sadeghi, E ; Khaledi, H ; Ghofrani, M. B ; The International Gas Turbine Institute ; Sharif University of Technology
    2006
    Abstract
    In recent years, the development of distributed power generation has resulted in significant reduction in network losses and transmission costs while it has increased reliability. Microturbine is one of these power generators that has the ability of relatively high power generation in spite of its small volume [1], [2]. In this paper, different layouts for advanced microturbine cycles are analyzed. In order to modify cycle characteristics such as power and efficiency, and reduce exergy destruction, different configurations including intercooler, aftercooler, and heat recovery boiler are separately and synthetically analyzed and compared. The effects of various parameters, such as compressor... 

    Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm

    , Article International Journal of Energy Research ; Volume 35, Issue 5 , 2011 , Pages 389-403 ; 0363907X (ISSN) Barzegar Avval, H ; Ahmadi, P ; Ghaffarizadeh, A. R ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    In this study, the gas turbine power plant with preheater is modeled and the simulation results are compared with one of the gas turbine power plants in Iran namely Yazd Gas Turbine. Moreover, multiobjective optimization has been performed to find the best design variables. The design parameters of the present study are selected as: air compressor pressure ratio (rAC), compressor isentropic efficiency (ηAC), gas turbine isentropic efficiency (ηGT), combustion chamber inlet temperature (T3) and gas turbine inlet temperature. In the optimization approach, the exergetic, economic and environmental aspects have been considered. In multiobjective optimization, the three objective functions,... 

    Alternative biomass fuels consideration exergy and power analysis for hybrid system includes PSOFC and GT integration

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 37, Issue 18 , Sep , 2015 , Pages 1962-1970 ; 15567036 (ISSN) Ozgoli, H. A ; Ghadamian, H ; Roshandel, R ; Moghadasi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The present study aims to analyze a combined heat and power (CHP) system with an approach towards exergy analysis and employing biomass gasification. The cycle modeling was carried out using Cycle-Tempo and the main purpose was to achieve parametric analysis of the model. The systems function was studied by categorizing alternative biomass fuels, also qualitative and quantitative analyses of the biomass fuel samples were presented and considering the trade-off points, most appropriate biomass fuel with respect to exergy efficiency and delivered power were determined. The results indicated that the bagasse and wood chips had the total exergy efficiency of 54.5 and 57.1% in trade-off point,... 

    Magnetic-induced nanoparticles and rotary tubes for energetic and exergetic performance improvement of compact heat exchangers

    , Article Powder Technology ; Volume 377 , 2021 , Pages 396-414 ; 00325910 (ISSN) Bezaatpour, M ; Rostamzadeh, H ; Bezaatpour, J ; Ebadollahi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the present study, the effects of rotary tubes and magnetic-induced nanofluid on heat transfer characteristics of a compact heat exchanger are individually investigated. Two-phase Eulerian model is employed to predict the hydrothermal and entropic characteristics of Fe3O4/water ferrofluid in the heat exchanger. Results indicate that utilizing each rotary tubes and magnetic field method can improve the energy and exergy efficiencies of the compact heat exchanger under specific circumstances by forming different types of secondary flow. It is found that employing each method individually can increase the maximum heat transfer rate by more than 60%. In comparison with methods like passive... 

    Performance optimization of a new flash-binary geothermal cycle for power/hydrogen production with zeotropic fluid

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 145, Issue 3 , 2021 , Pages 1633-1650 ; 13886150 (ISSN) Almutairi, K ; Hosseini Dehshiri, S ; Mostafaeipour, A ; Issakhov, A ; Techato, K ; Arockia Dhanraj, J ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In this study, the performance of a system consisting of an organic Rankine cycle (ORC) for generating power and an electrolyzer for producing hydrogen with a zeotropic mixture as working fluid to recover waste heat in a geothermal flash-binary cycle is investigated from energy and exergy point of view. The study also investigates the effect of using zeotropic mixtures with different compositions as the ORC's working fluid rather than pure fluids. Using the particle swarm optimization (PSO) algorithm, the optimization is performed to maximize the power production of the entire system. The results show that using the combination of pentane with other pure fluids as working fluid led to... 

    Investigation of a radiative sky cooling module using phase change material as the energy storage

    , Article Applied Energy ; Volume 321 , 2022 ; 03062619 (ISSN) Kiyaee, S ; Khalilmoghadam, P ; Behshad Shafii, M ; Moshfegh, A. Z ; Hu, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Radiative sky cooling (RSC) systems have enjoyed a privileged position in the research community due to generating cooling energy without consuming electricity using the open atmospheric window and infrared emission to the sky. However, the system's justification occurs when it reaches a temperature below the minimum 24-hour ambient temperature. This study utilizes phase change materials (PCM) as the energy storage of a hybrid daytime photovoltaic-thermal and nighttime RSC module and investigates the nocturnal cooling energy-saving potential of the system at different phase transition temperatures. After being validated by the experimental data in the literature, the simulated model was used...