Loading...
Search for: field-programmable-gate-array--fpga
0.01 seconds
Total 167 records

    Wind energy conversion system based on DFIG with open switch fault tolerant six-legs AC-DC-AC converter

    , Article Proceedings of the IEEE International Conference on Industrial Technology, Cape Town ; February , 2013 , Pages 1656-1661 ; 9781467345699 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Poure, P ; Saadate, S ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); IEEE Technology Management Council; IEEE Region 8; IEEE South Africa Section IE/IA/PEL Joint Chapter ; Sharif University of Technology
    2013
    Abstract
    Continuity of service of wind energy conversion systems as well as their reliability and performances are some of the major concerns in this power generation area. Six-legs AC/DC/AC converters are normally used in modern wind energy systems like as in the system with a doubly-fed induction generator (DFIG). A sudden failure of the converter can lead to the total or partial loss of the control of the phase currents and can cause serious system malfunction or shutdown. Therefore, to prevent the spread of the fault to the other system components and to ensure continuity of service, fault tolerant converter topologies associated to quick and effective fault detection and compensation methods... 

    FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 8 , May , 2013 , Pages 3360-3371 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper, an FPGA-based fault-tolerant back-to-back converter without redundancy is studied. Before fault occurrence, the fault-tolerant converter operates like a conventional back-to-back six-leg converter, and after the fault, it becomes a five-leg converter. Design, implementation, and experimental verification of an FPGA-based reconfigurable control strategy for this converter are discussed. This reconfigurable control strategy allows the continuous operation of the converter with minimum affection from a fault in one of the semiconductor switches. A very fast detection scheme is used to detect and locate the fault. Implementation of the fault detection and of the fully digital... 

    Fault-tolerant five-leg converter topology with FPGA-Based reconfigurable control

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 6 , 2013 , Pages 2284-2294 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    Fast fault detection and reconfiguration of power converters is necessary in electrical drives to prevent further damage and to make the continuity of service possible. On the other hand, component minimized converters may provide the benefits of higher reliability and less volume and cost. In this paper, a new fault-tolerant converter topology is studied. This converter has five legs before the fault occurrence, and after fault detection the converter continues to function with four legs. A very fast fault detection and reconfiguration scheme is presented and studied. Simulations and experimental tests are performed to evaluate the structure requirements, the digital reconfigurable... 

    Maestro: A high performance AES encryption/decryption system

    , Article Proceedings - 17th CSI International Symposium on Computer Architecture and Digital Systems, CADS 2013 ; October , 2013 , Pages 145-148 ; 9781479905621 (ISBN) Biglari, M ; Qasemi, E ; Pourmohseni, B ; Computer Society of Iran; IPM ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    High throughput AES encryption/decryption is a necessity for many of modern embedded systems. This article presents a high performance yet cost efficient AES system. Maestro can be used in a wide range of embedded applications with various requirements and limitations. Maestro is about one million times faster than the pure software implementation. The Maestro architecture is composed of two major components; the soft processor aimed at system initialization and control, and the hardware AES engine for high performance AES encryption/decryption. A ten stage implicit pipelined architecture is considered for the AES engine. Two novel techniques are proposed in design of AES engine which enable... 

    Blokus Duo game on FPGA

    , Article roceedings - 17th CSI International Symposium on Computer Architecture and Digital Systems, CADS 2013 ; 2013 , Pages 149-152 ; 9781479905621 (ISBN) Jahanshahi, A ; Taram, M. K ; Eskandari, N ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    There are a number of Artificial In elligence (AI) algorithms for implementation of 'Blokus Duo' game. We needed an implementation on FPGA, and moreover, the design had to respond under a given time constraint. In this paper we examine some of these algorithms and propose a heuristic algorithm to solve the problem by considering intelligence, time constraint and FPGA implementation limitations  

    A sigma-delta analog to digital converter based on iterative algorithm

    , Article Eurasip Journal on Advances in Signal Processing ; Volume 2012, Issue 1 , 2012 ; 16876172 (ISSN) Kafashan, M ; Ghorbani, M ; Marvasti, F ; Sharif University of Technology
    2012
    Abstract
    In this article, we present a new iterative algorithm aimed at improving the performance of the sigma-delta analog to digital (A/D) converter. We subject the existing sigma-delta modulator, without changing the configuration, to an iterative procedure to increase the signal-to-noise ratio of the reconstructed signal. In other words, we demonstrate that sigma-delta modulated signals can be decoded using the iterative algorithm. Simulation results confirm that the proposed method works very well, even when less complex filters are used. The simple and regular structure of this new A/D converter, not only makes realization of the hardware as ASIC or on FPGA boards easy, but also allows it to... 

    Biologically inspired spiking neurons: Piecewise linear models and digital implementation

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 59, Issue 12 , 2012 , Pages 2991-3004 ; 15498328 (ISSN) Soleimani, H ; Ahmadi, A ; Bavandpour, M ; Sharif University of Technology
    2012
    Abstract
    There has been a strong push recently to examine biological scale simulations of neuromorphic algorithms to achieve stronger inference capabilities. This paper presents a set of piecewise linear spiking neuron models, which can reproduce different behaviors, similar to the biological neuron, both for a single neuron as well as a network of neurons. The proposed models are investigated, in terms of digital implementation feasibility and costs, targeting large scale hardware implementation. Hardware synthesis and physical implementations on FPGA show that the proposed models can produce precise neural behaviors with higher performance and considerably lower implementation costs compared with... 

    Single fault reliability analysis in FPGA implemented circuits

    , Article Proceedings - International Symposium on Quality Electronic Design, ISQED, 19 March 2012 through 21 March 2012 ; March , 2012 , Pages 49-56 ; 19483287 (ISSN) ; 9781467310369 (ISBN) Jahanirad, H ; Mohammadi, K ; Attarsharghi, P ; Sharif University of Technology
    2012
    Abstract
    Reliability analysis in FPGA implementation of logic circuits is an important issue in designing fault tolerant systems for faulty environments. In this paper an analytical method is developed for analyzing such systems. This method is based on signal probability propagation of faults from the location of appearance to final outputs of circuit. Single fault model is used for the faults occurred in routes and LUTs. In addition reconvergent fan-outs are handled using 16 correlation coefficients propagation approach. Experimental results show a good agreement between this method and Monte Carlo method for reliability analysis of MCNC benchmarks  

    A high performance real-time simulator for controllers hardware-in-the-loop testing

    , Article Energies ; Volume 5, Issue 6 , 2012 , Pages 1713-1733 ; 19961073 (ISSN) Matar, M ; Karimi, H ; Etemadi, A ; Iravani, R ; Sharif University of Technology
    2012
    Abstract
    This paper presents a high performance real-time simulator for power electronic systems applications and primarily intended for controller hardware-in-the-loop (CHIL) testing. The novelty of the proposed simulator resides in the massively parallel hardware architecture that efficiently exploits fine-grained parallelism without imposing severe communication overhead time that can limit the performance. The simulator enables the use of a nanosecond range simulation timestep to simulate power electronic systems. Through the use of this nanosecond range simulation timestep, the simulator minimizes the error arising from the intersimulation timestep switching phenomenon associated with CHIL. The... 

    Implementation and hardware in the loop verification of five-leg converter control system on a FPGA

    , Article IECON Proceedings (Industrial Electronics Conference), 7 November 2011 through 10 November 2011, Melbourne, VIC ; 2011 , Pages 4015-4020 ; 9781612849720 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Poure, P ; Saadate, S ; Sharif University of Technology
    2011
    Abstract
    FPGAs are interesting choices for control of power electronics converters and electrical drives. In this paper, implementation of the control method of a reduced switch- count five-leg converter is carried out. Two PWM methods are studied. For verification of the implemented controller in a practical manner, without risking the damaging of the real system, "FPGA in the loop" experiments are performed. It is shown that using the proposed methodology, FPGA implementation and verification is fast and effective. The provided results show the high performance of the implemented controller on the FPGA, therefore the feasibility and suitability of the FPGA for this application is approved  

    Analyzing area penalty of 32-bit fault tolerant ALU using BCH code

    , Article Proceedings - 2011 14th Euromicro Conference on Digital System Design: Architectures, Methods and Tools, DSD 2011, 31 August 2011 through 2 September 2011, Oulu ; 2011 , Pages 409-413 ; 9780769544946 (ISBN) Khorasani, V ; Vahdat, B. V ; Mortazavi, M ; Sharif University of Technology
    2011
    Abstract
    In this paper we have presented a hardware implementation of 32-bit Fault-tolerant ALU (Arithmetic and Logic Unit) which is compared with the current techniques, Residue code, Triple Modular Redundancy (TMR) with single voting and TMR with triplicated voter that are widely used in space application to mitigate the upsets, in terms of area penalty. We consider BCH (Bose, Chaudhuri, and Hocquenghem) codec (encoder, decoder) using the prototyping FPGA (Field Programmable Gate Array). The new implementation of ALU employing BCH code on Spartan-3 FPGA has been provided. The results show that our fault tolerant method has the lowest hardware overhead and it can correct any 5-bit error in any... 

    New configuration memory cells for FPGA in nano-scaled CMOS technology

    , Article Microelectronics Journal ; Volume 42, Issue 11 , 2011 , Pages 1187-1207 ; 00262692 (ISSN) Azizi Mazreah, A ; Manzuri Shalmani, M. T ; Sharif University of Technology
    2011
    Abstract
    In nano-scaled CMOS technology, the reduction of soft error rate and leakage current are the most important challenges in designing Field Programmable Gate Arrays (FPGA). To overcome these challenges, based on the observations that most configuration bit-streams of FPGA are zeros across different designs and that configuration memory cells are not directly involved with signal propagation delays in FPGA, this paper presents three new low-leakage and hardened configuration memory cells for nano-scaled CMOS technology. These cells are completely hardened when zeros are stored in the cells and cannot flip from particle strikes at the sensitive cell nodes. These cells retain their data with... 

    FPGA-based fault tolerant scheme with reduced extra-sensor number for WECS with DFIG

    , Article Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 27 June 2011 through 30 June 2011 ; 2011 , Pages 1595-1601 ; 9781424493128 (ISBN) Shahbazi, M ; Gaillard, A ; Poure, P ; Zolghadri, M. R ; Sharif University of Technology
    2011
    Abstract
    Fast fault detection and converter reconfiguration is necessary for fault tolerant doubly fed induction generator (DFIG) in wind energy conversion systems (WECS) to prevent further damage and to make possible the continuity of service. Extra sensors are needed in order to detect the faults rapidly. In this paper, a very fast FPGA-based fault detection scheme is presented that minimizes the number of additional voltage sensors. A fault tolerant converter topology for this application is studied. Control and fault detection system are implemented on a single FPGA and Hardware in the Loop experiments are performed to evaluate the proposed detection scheme, the digital controller and the fault... 

    Fast detection of open-switch faults with reduced sensor count for a fault-tolerant three-phase converter

    , Article 2011 2nd Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2011 ; 2011 , Pages 546-550 ; 9781612844213 (ISBN) Shahbazi, M ; Zolghadri, M ; Poure, P ; Saadate, S ; Sharif University of Technology
    Abstract
    Fast fault detection and reconfiguration is necessary in power electronic converters in lots of applications to prevent further damage and to make possible the continuity of service. In this paper a very fast fault detection scheme is presented that minimizes the use of voltage sensors. A fault tolerant topology is studied. Control and fault detection system are implemented on a single FPGA and hardware in the loop experiments are performed to evaluate the detection scheme, the digital controller and the structure  

    Six-leg AC-AC fault tolerant converter with reduced extra-sensor number

    , Article International Review of Electrical Engineering ; Volume 6, Issue 1 , 2011 , Pages 132-138 ; 18276660 (ISSN) Shahbazi, M ; Poure, P ; Zolghadri, M. R ; Saadate, S ; Sharif University of Technology
    Abstract
    In order to prevent further damage and to provide the continuity of service of six-leg converter in case of open-switch fault, it is mandatory to perform fast fault detection and converter reconfiguration schemes. Extra sensors are needed to detect the faults rapidly. In this paper, a very fast FPGA-based fault detection scheme is presented that minimizes the number of additional voltage sensors. A six-leg fault tolerant converter topology without redundancy and with bidirectional power flow is studied. First simulations are carried out to evaluate the proposed fault detection principle and the fault tolerant converter topology. The fully digital control and the fault detection are... 

    A partial task replication algorithm for fault-tolerant FPGA-based soft-multiprocessors

    , Article CSI Symposium on Real-Time and Embedded Systems and Technologies, RTEST 2015, 7 October 2015 through 8 October 2015 ; October , 2015 , Page(s): 1 - 7 ; 9781467380478 (ISBN) Zabihi, M ; Farbeh, H ; Miremadi, S. G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    FPGA-based multiprocessors, referred as softmultiprocessors, have an increasing use in embedded systems due to appealing SRAM features. More than 95% of such FPGAs are occupied by SRAM cells constructing the configuration bits. These SRAM cells are highly vulnerable to soft errors threatening the reliability of the system. This paper proposes a fault-tolerant method to detect and correct errors in the configuration bits. The main of this method is to analyze the scheduled task graph and select a subset of tasks to be replicated in multiple processors based on the utilization of the processors in different execution phases. To this end, 1) errors are detected by re-executing a subset of tasks... 

    Designing the FPGA-based system for Triangle Phase space Mapping (TPSM) of heart rate variability (HRV) signal

    , Article 2015 38th International Conference on Telecommunications and Signal Processing, TSP 2015, 9 July 2015 through 11 July 2015 ; July , 2015 , Page(s): 1 - 4 ; 9781479984985 (ISBN) Rezaei, S ; Moharreri, S ; Ghorshi, A ; Molnar K ; Herencsar N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    There has been an increasing interest in telemonitoring thanks to the availability of new technologies for data transmission and processing with better performances and lower costs. In this paper, we try to develop and implement the HRV signal processing into a Field Programmable Gate Array (FPGA). The hardware implementing algorithm was developed in Verilog Hardware Description Language (HDL). In designed hardware, after defining the number of samples in the input, we extract and analyses the Triangular Phase Space Mapping (TPSM), a novel method for representation of heart rate. The performance of the system was tested using MATLAB and validated based on the input signals  

    An efficient reconfigurable architecture by characterizing most frequent logic functions

    , Article 25th International Conference on Field Programmable Logic and Applications, FPL 2015, 2 September 2015 through 4 September 2015 ; Sept , 2015 , Page(s): 1 - 6 ; 9780993428005 (ISBN) Ahmadpour, I ; Khaleghi, B ; Asadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Generous flexibility of Look-Up Tables (LUTs) in implementing arbitrary functions comes with significant performance and area overheads compared with their Application-Specific Integrated Circuit (ASIC) equivalent. One approach to alleviate such overheads is to use less flexible logic elements capable to implement majority of logic functions. In this paper, we first investigate the most frequently used functions in standard benchmarks and then design a set of less-flexible but area-efficient logic cells, called Hard Logics (HL). Since higher input functions have diverse classes, we leverage Shannon decomposition to break them into smaller ones to either reduce the HL design space complexity... 

    FPGA-based protection scheme against hardware trojan horse insertion using dummy logic

    , Article IEEE Embedded Systems Letters ; Volume 7, Issue 2 , 2015 , Pages 46-50 ; 19430663 (ISSN) Khaleghi, B ; Ahari, A ; Asadi, H ; Bayat-Sarmadi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Hardware trojan horses (HTH) have recently emerged as a major security threat for field-programmable gate arrays (FPGAs). Previous studies to protect FPGAs against HTHs may still leave a considerable amount of logic resources to be misused by malicious attacks. This letter presents a low-level HTH protection scheme for FPGAs by filling the unused resources with the proposed dummy logic. In the proposed scheme, we identify the unused resources at the device layout-level and offer dummy logic cells for different resources. The proposed HTH protection scheme has been applied on Xilinx Virtex devices implementing a set of IWLS benchmarks. The results show that by employing the proposed HTH... 

    A FPGA based time analyser for stochastic methods in experimental physics

    , Article Instruments and Experimental Techniques ; Volume 58, Issue 3 , May , 2015 , Pages 350-358 ; 00204412 (ISSN) Arkani, M ; Khalafi, H ; Vosoughi, N ; Khakshournia, S ; Sharif University of Technology
    Maik Nauka Publishing / Springer SBM  2015
    Abstract
    A two-channel time analyser data acquisition system is developed for analysis of stochastic processes of random time interval pulses. The system is implemented on a typical low cost FPGA device. Two stochastic processes of nuclear interactions can be recorded by the system independently without any inter-channel dead time behaviour. The experimental results without any hardware based data reduction are transferred to the computer to perform arbitrary post analysis of the data using powerful software engineering tools to estimate the statistical properties of the processes. The performance of the system is verified experimentally. The maximum time digitization period and the minimum channel...