Loading...
Search for: finite-difference-methods
0.008 seconds
Total 169 records

    Dynamics of multi layer microplates considering nonlinear squeeze film damping

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 1096665X (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Ahmadian, M. T ; Moghimi Zand, M ; Borhan, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    This paper presents a model to analyze pull-in phenomenon and dynamics of multi layer microplates using coupled finite element and finite difference methods. Firstorder shear deformation theory is used to model dynamical system using finite element method, while Finite difference method is applied to solve the nonlinear Reynolds equation of squeeze film damping. Using this model, Pull-in analysis of single layer and multi layer microplates are studied. The results of pull-in analysis are in good agreement with literature. Validating our model by pull-in results, an algorithm is presented to study dynamics of microplates. These simulations have many applications in designing multi layer... 

    Implementation of high-order compact schemes to the iterative parabolized Navier-Stokes equations

    , Article 25th Congress of the International Council of the Aeronautical Sciences 2006, Hamburg, 3 September 2006 through 8 September 2006 ; Volume 3 , 2006 , Pages 1628-1643 Esfahanian, V ; Hejranfar, K ; Darian, H. M ; Sharif University of Technology
    Curran Associates Inc  2006
    Abstract
    The numerical solution of the parabolized Navier-Stokes (PNS) and globally iterated PNS (IPNS) equations for accurate computation of hypersonic axisymmetric flowfields is obtained by using the fourth-order compact finite-difference method. The PNS and IPNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in both the compact PNS and IPNS schemes to obtain accurate solutions in the vicinity of the shock. The main advantage of the present formulation is that the basic flow variables and their first and second derivatives are... 

    An optimized large-stencil approach for capturing near-PI frequencies

    , Article 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, 8 May 2006 through 10 May 2006 ; Volume 5 , 2006 , Pages 3010-3022 ; 1563478099 (ISBN); 9781563478093 (ISBN) Ghasemi, A ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    Large-stencil schemes which their spectral properties are acceptable in the vicinity of ω = π are analyzed for the first time. A machine independent model for evaluating the efficiency of generalized time-marching finite-difference algorithms over periodic domains is developed. This model which is based on operation count reveals that for small values of Total Computational Cost(TCC), the previous low-order small-stencil schemes are more efficient while for moderate TCC, the efficiency of optimized large-stencil schemes abruptly increases. This important result is the motivation for developing optimized large-stencil schemes. The current schemes are successfully implemented in a full... 

    BEM modeling of surface water wave motion with laminar boundary layers

    , Article Engineering Analysis with Boundary Elements ; Volume 30, Issue 1 , 2006 , Pages 14-21 ; 09557997 (ISSN) Jamali, M ; Sharif University of Technology
    2006
    Abstract
    This study is concerned with numerical modeling of viscous surface wave motion using boundary element method (BEM). The equations of motion for thin boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM-finite difference technique is used to obtain the viscosity-related quantities such as wave damping rate, shear stress, and velocity distribution inside the boundary layer. The technique is presented for standing surface wave motion. An excellent agreement is obtained between the numerical predictions and the previous results. The extension to other free surface problems is straightforward. © 2005 Elsevier Ltd. All rights reserved  

    Numerical simulation of liquid/gas phase flow during mold filling

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 196, Issue 1-3 , 2006 , Pages 697-713 ; 00457825 (ISSN) Tavakoli, R ; Babaei, R ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    A numerical model for simulation of liquid/gas phase flow during mold filling is presented. The incompressible Navier-Stokes equations are discretized on a fixed Cartesian mesh with finite difference method. The fractional-step scheme is employed for enforcing incompressibility constraint. The free surface effects are calculated using the volume of fluid method based on the piecewise-linear interface reconstruction and split Lagrangian advection of volume fraction field. Adding limited compressibility to the gas phase led to improvement in convergence rate of Poisson equation solver (about 2-fold). This new concept permits simulation of two-phase incompressible free surface flow during mold... 

    Transient radiative heat transfer analysis of a polypropylene layer using hottel's zonal method

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Safavisohi, B ; Sharbati, E ; Aghanajafi, C ; Khatami Firoozabadi, R ; Sharif University of Technology
    2006
    Abstract
    Polymer films possess excellent optical properties, such as high transparency, and thermal characteristics, like low heat conductivity, as well as further polymer specific advantages. Consequently, polymer films have an outstanding potential for many solar applications. They are already used for encapsulation of photovoltaic (PV) cells, as convection barrier in solar collectors and as substrate or adhesive layers for glazing. In translucent polymers, energy can be transferred internally by radiation in addition to conduction. Since radiant propagation is very rapid, it can provide energy within the layer more quickly than diffusion by heat conduction. Thus, the transient thermal response of... 

    An approximated solution to the 2D incompressible Navier-Stokes equations via Adomian Decomposition Method

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 7 , 2006 , Pages 878-885 ; 11092769 (ISSN) Najafi, M ; Taeibi Rahni, M ; Aavani, K ; Sharif University of Technology
    2006
    Abstract
    The Adomian Decomposition Method (ADM) for solving the highly non-linear vorticity-stream function formulation of 2D incompressible Navier-Stokes equations has been implemented. The analysis is accompanied by numerical boundary conditions. Also, numerical simulation, using finite difference method (FDM), is performed for comparison purposes. The obtained results only for few terms of the expansion are presented. Because present software such as Mathematica/Maple can not calculate many terms (for example: up to 10 terms) of solution and then ADM approach of this problem is an open problem case  

    A study on mutual interaction between atomistic and macroscopic phenomena during electrochemical processes using FD-KMC model: Application to CV test in simple copper sulfate bath

    , Article Journal of Electroanalytical Chemistry ; Volume 592, Issue 1 , 2006 , Pages 95-102 ; 15726657 (ISSN) Saedi, A ; Sharif University of Technology
    Elsevier  2006
    Abstract
    A multiscale FD-KMC model has been developed to simulate the cyclic voltammetry test of a copper electrode in simple copper sulfate bath. In this coupled model, the FD code provides the cupric ion concentration on OHP for KMC code, while the KMC code provides the electrochemical properties of the copper electrode (surface activity and rate constants of redox reactions) as an input data for FD code. The changes in the electrode properties due to the atomistic phenomena (deposition dissolution and surface diffusion) have been studied for the present potentiodynamic system. The results showed that the CV process consists of some distinct stages, so that the electrode exhibits a specific... 

    A coupled boundary element-finite difference model of surface wave motion over a wall turbulent flow

    , Article International Journal for Numerical Methods in Fluids ; Volume 51, Issue 4 , 2006 , Pages 371-383 ; 02712091 (ISSN) Jamali, M ; Sharif University of Technology
    2006
    Abstract
    An effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM-finite difference technique is used to model the wave motion and the corresponding boundary layer flow. A mixing-length theory is used for turbulence modelling. The model results are in good agreement with previous physical and numerical experiments. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2005 John Wiley & Sons, Ltd  

    A study on mutual interaction between atomistic and macroscopic phenomena during electrochemical processes using coupled finite difference - Kinetic Monte Carlo model: Application to potential step test in simple copper sulfate bath

    , Article Journal of Electroanalytical Chemistry ; Volume 588, Issue 2 , 2006 , Pages 267-284 ; 15726657 (ISSN) Saedi, A ; Sharif University of Technology
    Elsevier  2006
    Abstract
    A novel method is used to link a 2D kinetic Monte Carlo code to a 1D finite difference code to construct a more realistic and efficient tool for simulating various electrochemical processes. This multiscale model is able to simulate the long-scale mass transfer of electroactive species in bath along with electrode surface phenomena at atomic scale simultaneously. An embedded atom method (EAM) has been used to evaluate the barrier energies of diffusion and redox reactions on electrode surface. The FD code provides the ion concentration on OHP for KMC code, while the KMC code provides the surface activity and rate constants of redox reactions as an input data for FD code. The electrochemical... 

    Development of a saturation-based μ(I)-rheology for wet granular materials using discrete element method

    , Article Scientia Iranica ; Volume 28, Issue 5 B , 2021 , Pages 2719-2732 ; 10263098 (ISSN) Ghorbani, R ; Taghizadeh Manzari, M ; Hajilouy Benisi, A ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The present study employs Discrete Element Method (DEM) to establish a rheological model that relates the apparent viscosity of a granular material to shear rate, normal stress, and water saturation. In addition, a theoretical model was developed to determine water distribution and water-induced forces between particles for different saturations. The resulting forces were embedded in a 3D shear cell as a numerical rheometer, and a wet specimen was sheared between two walls. A power law rheological model was then obtained as a function of inertia number and saturation. It was found that up to a critical saturation, the apparent viscosity increased with saturation that was higher than that of... 

    Interpretation of CPT in unsaturated sands under drained conditions: A numerical study

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 45, Issue 18 , 2021 , Pages 2732-2755 ; 03639061 (ISSN) Keshmiri, E ; Ahmadi, M. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    A finite difference-based numerical model simulating the cone penetration process in unsaturated sands is presented. Mohr–Coulomb model (MCM) with simple modifications and Sun model (SM) were implemented to capture the unsaturated sand behaviour. It was shown that the cone tip resistance values resulting from the two models were fairly comparable. Predicted cone tip resistance values in dry, saturated and unsaturated sands using MCM were validated by the results of field and calibration chamber tests. Sensitivity analyses were performed, and the influence of parameters including relative density, mean effective stress and apparent cohesion due to suction on the tip resistance was... 

    Dynamical control of multilayer spacetime structures using extended fourier modal method

    , Article IEEE Photonics Journal ; Volume 13, Issue 6 , 2021 ; 19430655 (ISSN) Khorrami, Y ; Fathi, D ; Khavasi, A ; Rumpf, R. C ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We introduce two-dimensional space plus time (2D+1) structure and numerically investigate it using a developed multilayer simulation framework, for the first time. The new structure is consisting of crossed grating with time-varying permittivity which is inspired from1D+1. In this regard, we extend FourierModal Method (FMM) in a general approach for spacetime multilayer states. Our proposed framework is fast, robust, and powerful compared to various finite difference methods. We use the scattering matrix technique to develop the proposed spacetime simulation method for multilayer structures using a non-uniform stack of layers. The method is perfectly suitable to investigate the... 

    Modeling and optimization of a multiple (cascading) phase change material solar storage system

    , Article Thermal Science and Engineering Progress ; Volume 23 , 2021 ; 24519049 (ISSN) Nekoonam, S ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Utilization of heat storage units in solar energy systems can resolve the challenge of fluctuation and uncertainty of the solar energy. Phase change materials (PCMs) are used as the storage media for solar energy storage systems. In this research, a system including of a solar collector and a PCM-based cascaded energy storage unit was numerically investigated. Air was used as the heat transfer fluid (HTF) and three paraffin-based materials (RT50, RT65, and RT80) were used as PCM for the energy storage unit. The investigated system mainly operates between 15 °C and 90 °C and considering different PCMs, the selected PCMs were appropriate. Paraffin-based PCMs also present acceptable thermal... 

    Interaction of micropolar fluid structure with the porous media in the flow due to a rotating cone

    , Article Alexandria Engineering Journal ; Volume 60, Issue 1 , 2021 , Pages 1249-1257 ; 11100168 (ISSN) Ahmad, S ; Ali, K ; Bashir, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A model of heat and mass transfer of two dimensional MHD micropolar fluid over a cone is constructed. Similarity transformation is adopted for the conversion of partial differential equations into ordinary differential equations have been linearized by employing the Newton's linearization technique and then new sets of equations are discretized using the finite difference method. The impact of non-dimensional parameters is further analyzed and the numerical results for profiles of velocity, temperature and concentration are expressed graphically and the results are discussed in detail. For the higher values of Dufour number, temperature field is enhanced graphically but show the opposite... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Numerical Simulation Cavitating Flows Using Compact Finite-difference Scheme

    , M.Sc. Thesis Sharif University of Technology Shokri, Maryam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the study, the simulation of two-dimensional cavitating flows is performed by applying a high-order accurate numerical method to the preconditioned, homogenous, multiphase Navier-Stokes equations. The baseline differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations. A coordinate transformation is applied and the resulting system of governing equations in curvilinear coordinates is discretized using a fourth-order compact finite-difference scheme. The high-order accurate numerical scheme employing the suitable linear and nonlinear filters to account for density jumps across the cavity interface is shown to yield an... 

    Development of Compact Finite-Difference Lattice Boltzmann Method for Solving Two-Phase Flows

    , Ph.D. Dissertation Sharif University of Technology Ezzatneshan, Eslam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present thesis, a high-order compact finite-difference lattice Boltzmann method (CFDLBM) is proposed and applied for an accurate and efficient numerical simulation of liquid-vapor two-phase flows. At first, the stability of the fourth-order CFDLBM is performed by using the von Neumann stability analysis for the D2Q7 and D2Q9 lattices. The stability analysis indicates that the CFDLBM proposed is stable and thus suitable for the simulation of high Reynolds number flows. The high-order CFDLBM is then developed and applied to accurately compute 2-D and 3-D incompressible flows in the Cartesian coordinates. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized... 

    Numerical Simulation of 2D Compressible Cavitation Flow Using Compact Finite-Difference Method

    , M.Sc. Thesis Sharif University of Technology Irani, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of 2D inviscid compressible cavitation flow is performed by using the compact finite-difference method. The problem formulation is based on the multiphase compressible Euler equations with the assumption of the homogeneous equilibrium model and the system of baseline differential equations is comprised of the continuity, momentum and energy equations for the vapor-liquid mixture. To complete the system of governing equations, the ideal gas relation is used for the vapor phase and the Tait relation is applied for the liquid phase, and therefore, the compressibility effects are considered for both the vapor and liquid phases. To analyze the flow... 

    Interaction of micropolar fluid structure with the porous media in the flow due to a rotating cone

    , Article Alexandria Engineering Journal ; Volume 60, Issue 1 , 2021 , Pages 1249-1257 ; 11100168 (ISSN) Ahmad, S ; Ali, K ; Bashir, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A model of heat and mass transfer of two dimensional MHD micropolar fluid over a cone is constructed. Similarity transformation is adopted for the conversion of partial differential equations into ordinary differential equations have been linearized by employing the Newton's linearization technique and then new sets of equations are discretized using the finite difference method. The impact of non-dimensional parameters is further analyzed and the numerical results for profiles of velocity, temperature and concentration are expressed graphically and the results are discussed in detail. For the higher values of Dufour number, temperature field is enhanced graphically but show the opposite...