Loading...
Search for: finite-element-simulation
0.016 seconds

    Prediction of machining chatter based on FEM simulation of chip formation under dynamic conditions

    , Article International Journal of Machine Tools and Manufacture ; Volume 50, Issue 7 , July , 2010 , Pages 611-620 ; 08906955 (ISSN) Mahnama, M ; Movahhedy, M. R ; Sharif University of Technology
    2010
    Abstract
    Machining chatter is an inherently nonlinear phenomenon that is affected by many parameters such as cutting conditions, tool geometry e.g., nose radius and clearance angle and frictional conditions at the tool/workpiece interface. Models for chatter prediction often ignore nonlinearities or introduce them through simple models for friction and geometry. In particular, the effect of chiptool interaction on the occurrence of chatter is not investigated thoroughly. This paper presents a novel approach for prediction of chatter vibration and for investigation of the effects of various conditions on the onset of chatter. This approach uses finite element simulation to investigate the... 

    Surface integrity and microstructure changes in 3D elliptical ultrasonic assisted turning of Ti–6Al–4V: FEM and experimental examination

    , Article Tribology International ; Volume 151 , November , 2020 Lotfi, M ; Amini, S ; Akbari, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Improvement of surface integrity is one of the machining desires where different parameters are related to this phenomenon. Therefore, the effect of 3D elliptical vibration on different aspects of surface integrity is investigated, in this study. Surface roughness, microstructure changes (grain size), and microhardness plus cutting forces and tool-chip friction are experimentally investigated. Moreover, to clarify more details, finite element simulation of microstructure changes is carried out when conventional and 3D elliptical ultrasonic assisted turning of Ti–6Al–4V alloy are implemented. As a result, it was revealed that 3D vibration method causes the smaller grain size to be generated... 

    Finite element simulation of ultrasonic-assisted machining: a review

    , Article International Journal of Advanced Manufacturing Technology ; Volume 116, Issue 9-10 , 2021 , Pages 2777-2796 ; 02683768 (ISSN) Lotfi, M ; Akbari, J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Ultrasonic-assisted machining is an advanced method which could improve the process of machining. Besides, simulation modeling process is a method to help the researchers analyze different aspects of the process with more details in a shorter time. Simulation of ultrasonic-assisted machining is also a field of research that is of interest to researchers working in the field of machining processes. In recent years, a variety of papers have been published where cutting forces, chip formation, tool wear and temperature, and microstructure changes were simulated. That being the case, a review paper is required to represent the advances implemented by researchers in the simulation of... 

    A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    , Article Materials Science and Engineering C ; Volume 32, Issue 7 , 2012 , Pages 1993-2000 ; 09284931 (ISSN) Khoei, A. R ; Aramoon, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are... 

    On the vulnerability of the Shrine of Prophet Daniel through field observation and numerical simulation

    , Article Engineering Failure Analysis ; Volume 102 , 2019 , Pages 237-259 ; 13506307 (ISSN) Khaloo, A ; Khoshnevis, A ; Yekrangnia, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The Shrine of Prophet Daniel, located in the south-western part of Iran, represents one of the great examples of the pure brick cultural heritage buildings. This study summarizes the historical background of the shrine building. The structural parts of the building are covered in detail. The existing damages to different parts of the building are classified and the cause of each damage type is elaborated. Several in-situ and laboratory standard tests were carried out to determine the most important material characteristics of the building. Field observations and tests results prove that the building has mostly suffered from the ascending moisture which caused foundation settlement and... 

    Strain and stress concentrations in elastomers at finite deformations: effects of strain-induced crystallization, filler reinforcement, and deformation rate

    , Article Acta Mechanica ; Volume 227, Issue 7 , 2016 , Pages 1969-1982 ; 00015970 (ISSN) Khajehsaeid, H ; Reese, S ; Arghavani, J ; Naghdabadi, R ; Sharif University of Technology
    Springer-Verlag Wien 
    Abstract
    Strain and stress concentrations are studied for elastomers at finite deformations. Effects of strain-induced crystallization, filler reinforcement and deformation rate are also investigated, and micromechanical descriptions are provided for the observed results. A simple problem is subjected to finite element simulations to show the results evidently. Material parameters are obtained from experimental tests conducted on standard tensile samples of filled and unfilled natural rubber (NR) as well as styrene–butadiene rubber (SBR) as crystallizing and non-crystallizing rubbers, respectively. In all simulations, the strain concentration factor KE is shown to decrease monotonically where the... 

    Fatigue life analysis of automotive cast iron knuckle under constant and variable amplitude loading conditions

    , Article Applied Mechanics ; Volume 3, Issue 2 , 2022 , Pages 517-532 ; 26733161 (ISSN) Kashyzadeh, K. R ; Souri, K ; Bayat, A. G ; Jabalbarez, R. S ; Ahmad, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    The main aim of the present paper is to assess the fatigue lifetime of ductile cast iron knuckles as one of the critical components of an automotive steering system. To this end, a real driving path, including various maneuvers, such as acceleration, braking, cornering, and moving on various types of road roughness, was considered. Different load histories, which are applied on various joints of the component (i.e., lower control arm, steering linkage, and Macpherson strut), were extracted through Multi-Body Dynamics (MBD) analysis of a full vehicle model. The achievements of previous studies have proved that the steering knuckle fails from the steering linkage and due to the rotational... 

    Investigation of the effect of high +Gz accelerations on human cardiac function

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 27 , 2013 , Pages 54-63 ; 17516161 (ISSN) Jamshidi, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This study investigates the effect of body acceleration on human cardiac function. Finite element analysis is conducted to simulate geometrical and mechanical properties of human heart. Heart geometrical modeling in three-dimension is performed by segmentation of cardiac MRI images. The nonlinear mechanical behavior of myocardium is modeled by Mooney-Rivlin, Polynomial, Ogden and Yeoh hyperelastic material models. Stress-strain curves of myocardial tissue are obtained from experimental compression tests on bovine heart samples. The experimental results are employed for the evaluation of material coefficients by the nonlinear least squares method. Among hyperelastic models, the Yeoh model... 

    Optimal design of two-dimensional porosity distribution in shear deformable functionally graded porous beams for stability analysis

    , Article Thin-Walled Structures ; Volume 120 , 2017 , Pages 81-90 ; 02638231 (ISSN) Jamshidi, M ; Arghavani, J ; Sharif University of Technology
    Abstract
    In the present study, considering two-dimensional porosity distribution through a functionally graded porous (FGP) beam, its optimal distributions are obtained. A multi-objective optimization problem is defined to maximize critical buckling load and minimize mass of the beam, simultaneously. To this end, Timoshenko beam theory is employed and equilibrium equations for two-dimensional functionally graded porous (2D-FGP) beam are derived. For the solution, we present generalized differential quadrature method (GDQM) and consider two symmetric boundary conditions (Clamped-Clamped and Hinged-Hinged). Solving generalized eigenvalue problem, critical buckling load for 2D-FGP beam is then obtained.... 

    Accurate analytical model for determination of effective diffusion coefficient of polymer electrolyte fuel cells by designing compact Loschmidt cells

    , Article Fuel ; Volume 199 , 2017 , Pages 551-561 ; 00162361 (ISSN) Izadmehr, M ; Abbasi, M ; Mansouri, M ; Kazemi, A ; Nakhaee, A ; Daryasafar, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Effective diffusion coefficient is an important parameter which needs to be determined in different fields of study, such as cathode catalyst layers of PEM fuel. For this purpose, a Loschmidt diffusion cell can be used. When a porous medium is placed in Loschmidt apparatus, the effective gas diffusion coefficient (EGDC) of this section must be correlated by diffusion coefficient in absence of a porous medium. In the previous researches studying the Loschmidt diffusion cell, a simplifying infinite-length assumption was used in the analytical solution. Therefore, the solution is only applicable for a short time range, and this can result in high error. In order to overcome this challenge, the... 

    Effects of microstructural morphology on formability, strain localization, and damage of ferrite-pearlite steels: experimental and micromechanical approaches

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 52, Issue 2 , January , 2021 , Pages 711-725 ; 10735623 (ISSN) Isavand, S ; Assempour, A ; Sharif University of Technology
    Springer  2021
    Abstract
    This paper attempts to predict how the microstructural features and mechanical properties of the individual constituents affect the deformation behavior and formability of ferrite-pearlite steels under quasi-static loading at room temperature. For this purpose, finite element simulations using representative volume elements (RVEs) based on the real microstructures were implemented to model the flow behavior of the ferrite-pearlite steels with various microstructural morphologies (non-banded and banded). The homogenized flow curves obtained from the RVEs subjected to periodic boundary conditions together with displacement boundary conditions were validated with the experimental results of the... 

    Experimental and numerical fatigue life study of cracked AL plates reinforced by glass/epoxy composite patches in different stress ratios

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 6 , 2021 , Pages 894-910 ; 15397734 (ISSN) Hosseini, K ; Safarabadi, M ; Ganjiani, M ; Mohammadi, E ; Hosseini, A ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this study, the fatigue behavior of composite reinforced cracked aluminum 1050 plates is investigated experimentally and numerically. The tests are conducted in four different stress ratios between 0 and 1. At first step, plates with similar cracks and geometries have been prepared. Then the glass/epoxy patches have been attached to the cracked plates using Araldite 2015 adhesive. Fatigue load has been applied to three cases of samples including non-patch, one-side patch and two-side patch, where in all stress ratios the maximum force is considered constant. A three-dimensional finite element analysis is developed in ABAQUS. A good correlation between finite element results and the... 

    Finite element analysis of shot-peening effect on fretting fatigue parameters

    , Article Tribology International ; Volume 44, Issue 11 , 2011 , Pages 1583-1588 ; 0301679X (ISSN) H-Gangaraj, S. M ; Alvandi Tabrizi, Y ; Farrahi, G. H ; Majzoobi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    Abstract
    Shot peening is widely used to improve the fretting fatigue strength of critical surfaces. Fretting fatigue occurs in contacting parts that are subjected to fluctuating loads and sliding movements at the same time. This paper presents a sequential finite element simulation to investigate the shot peening effects on normal stress, shear stress, bulk stress and slip amplitude, which are considered to be the controlling parameters of fretting damage. The results demonstrated that among the modifications related to shot peening, compressive residual stress has a dominant effect on the fretting parameters  

    Finite element simulation of shot peening coverage with the special attention on surface nanocrystallization

    , Article Procedia Engineering, 5 June 2011 through 9 June 2011 ; Volume 10 , 2011 , Pages 2464-2471 ; 18777058 (ISSN) Hassani Gangaraj, S. M ; Guagliano, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    The present study aims to challenge the existing finite element models in terms of one of the most important practical parameters, i.e. coverage. Important models from the literature are re-simulated and their resulted treated surfaces are carefully examined. Result of this study shows that existing finite element models could not reflect the realistic coverage. A variable dimension symmetry cell is developed in order to acquire full coverage and at the same time not increasing the computational cost. This model can successfully simulate the surface nanocrystallization by severe shot peening in which the amount of coverage is much higher than conventional shot peening  

    An improved dynamic model for simulation and stability analysis of brushless doubly fed machines

    , Article 2016 18th European Conference on Power Electronics and Applications, EPE 2016 ECCE Europe, 5 September 2016 through 9 September 2016 ; 2016 ; 9789075815245 (ISBN) Hashemnia, M. N ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a dynamic model for brushless doubly fed machine including core loss. Using the space vector notation, the conventional equivalent circuit model of the machine is modified to take the core loss effect into account. The proposed method introduces resistances corresponding to stator/rotor core loss components designated to the power/control windings. This model can be used for enhanced time-domain simulations, design of high performance control strategies with core loss detuning effect compensation and also as a tool for stability analysis of the machine drive under different control methods. The dynamic model of a prototype machine is simulated with and without... 

    Forming limit diagram of tubular hydroformed parts considering the through-thickness compressive normal stress

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 230, Issue 1 , 2016 , Pages 332-343 ; 14644207 (ISSN) Hashemi, R ; Abri Nia, K ; Assem Pour, A ; Khakpour Nejadkhaki, H ; Shahbazi Mastan Abad, A ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    In this study, the effect of a compressive normal stress has been considered in the determination of forming limit diagrams and forming limit stress diagrams to predict neck initiation failure in tube hydroforming of T-shaped parts. Computation of the forming limit diagrams and FLSDs is based on the generalized Marciniak and Kuczynski method to consider the existence of through-thickness compressive normal stress. The proposed forming limit diagrams and FLSDs were used in conjunction with ABAQUS/EXPLICIT finite element simulations to predict the onset of necking in tube hydroforming of T-shaped part. The amount of calibration pressure and axial feeding required to produce an acceptable part... 

    Investigation of thermal effects on machining chatter using FEM simulation of chip formation

    , Article Procedia CIRP ; Volume 1, Issue 1 , 2012 , Pages 50-55 ; 22128271 (ISSN) Hajmohammadi, M. S ; Movahhedy, M. R ; Sharif University of Technology
    2012
    Abstract
    Chatter vibration is a major cause of limitations in increasing material removal rate in machining. Machining chatter is caused by the interaction between tool and work-piece. Various nonlinear phenomena in the machining process affect the occurrence of chatter. Finite element simulation of chip formation allows for incorporation of various factors in the chip formation process. It can therefore be used to simulate the occurrence of chatter in practical conditions and to predict the conditions that lead to stable cutting. In this paper, a one degree of freedom dynamic model of the cutting tool is used to simulate the interaction of machining dynamics with the thermo-mechanical chip formation... 

    Vibration band gap properties of a periodic beam-like structure using the combination of GDQ and GDQR methods

    , Article Waves in Random and Complex Media ; 2019 ; 17455030 (ISSN) Hajhosseini, M ; Mahdian Parrany, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, a periodic beam-like structure consisting of the horizontal and inclined beam elements is proposed. Three models with three different angles of inclination are considered. The generalized differential quadrature (GDQ) and generalized differential quadrature rule (GDQR) methods are used to solve the differential equations of longitudinal and transverse vibrations, respectively. The effects of two geometrical parameters on the first three band gaps of each model are investigated, comprehensively. Results show that this periodic structure has wide band gaps at low frequency ranges. Furthermore, the band gaps can get close to each other by changing the geometrical parameters.... 

    Vibration band gap properties of a periodic beam-like structure using the combination of GDQ and GDQR methods

    , Article Waves in Random and Complex Media ; 2019 ; 17455030 (ISSN) Hajhosseini, M ; Mahdian Parrany, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, a periodic beam-like structure consisting of the horizontal and inclined beam elements is proposed. Three models with three different angles of inclination are considered. The generalized differential quadrature (GDQ) and generalized differential quadrature rule (GDQR) methods are used to solve the differential equations of longitudinal and transverse vibrations, respectively. The effects of two geometrical parameters on the first three band gaps of each model are investigated, comprehensively. Results show that this periodic structure has wide band gaps at low frequency ranges. Furthermore, the band gaps can get close to each other by changing the geometrical parameters.... 

    Vibration band gap properties of a periodic beam-like structure using the combination of GDQ and GDQR methods

    , Article Waves in Random and Complex Media ; Volume 31, Issue 5 , 2021 , Pages 795-811 ; 17455030 (ISSN) Hajhosseini, M ; Mahdian Parrany, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this study, a periodic beam-like structure consisting of the horizontal and inclined beam elements is proposed. Three models with three different angles of inclination are considered. The generalized differential quadrature (GDQ) and generalized differential quadrature rule (GDQR) methods are used to solve the differential equations of longitudinal and transverse vibrations, respectively. The effects of two geometrical parameters on the first three band gaps of each model are investigated, comprehensively. Results show that this periodic structure has wide band gaps at low frequency ranges. Furthermore, the band gaps can get close to each other by changing the geometrical parameters....