Loading...
Search for: flow-control
0.007 seconds

    High-speed Flow Control Applying Local Heat Addition for Drag Reduction

    , M.Sc. Thesis Sharif University of Technology Haghighi Tajvar, Peyman (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    In this thesis, aerodynamic and aero thermodynamic effects associated with local heat addition into an inviscid steady state high speed flow are studied, numerically. This local heat, can be generated by a C.W laser, has a cylindrical shape and a Gaussian distribution in space. The loctation of the heat source, focal point of the laser, is considered to be upstream of the shock wave generated by a squared obstacle. The free stream Mach is 6 and the angle of attack is zero. Also, the center of this focal point is located on the symmetry line of the square. This kind of heat addition into high speed flow leads to wave drag reduction. Various parameters can affect this kind of flow control.... 

    Experimental Study of a DBD Plasma Actuators Location and Actuation Frequency on Flow Separation Control

    , M.Sc. Thesis Sharif University of Technology Ghamkhar Pishkhani, Kamran (Author) ; Ebrahimi, Abbas (Supervisor) ; Puoryousefi, Gholamhossein (Co-Supervisor)
    Abstract
    This thesis investigates the stall control over an airfoil employing dual excitation of separated shear layers with DBD plasma actuators. This research is studied experimentally on the NACA 0015 airfoil at the angle of attack and Reynolds number of 14° and 300000, respectively. Two plasma actuators, one on the suction side just upstream the separation point and the other on the pressure side at the trailing edge, are exploited to control the baseline flow. Surface pressure distribution, as well as the dominant natural frequency associated with flow structures in the wake, are evaluated. Based on the active actuators, three controlled cases are considered in the present study. In the first... 

    Random walk-percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 406, issue , July , 2014 , p. 214-221 ; ISSN: 03784371 Ganjeh-Ghazvini, M ; Masihi, M ; Ghaedi, M ; Sharif University of Technology
    Abstract
    Fluid flow modeling in porous media has many applications in waste treatment, hydrology and petroleum engineering. In any geological model, flow behavior is controlled by multiple properties. These properties must be known in advance of common flow simulations. When uncertainties are present, deterministic modeling often produces poor results. Percolation and Random Walk (RW) methods have recently been used in flow modeling. Their stochastic basis is useful in dealing with uncertainty problems. They are also useful in finding the relationship between porous media descriptions and flow behavior. This paper employs a simple methodology based on random walk and percolation techniques. The... 

    Managed-pressure drilling: Techniques and options for improving operational safety and efficiency

    , Article Petroleum and Coal ; Volume 54, Issue 1 , May , 2012 , Pages 24-33 ; 13377027 (ISSN) Rohani, M. R ; Sharif University of Technology
    2012
    Abstract
    In the most of the drilling operations a considerable amount of money is spent for drilling related problems; including stuck pipe, lost circulation, and excessive mud cost. In order to decrease the percentage of non-productive time (NPT) caused by these kind of problems, the aim is to control annular frictional pressure losses especially in the fields where pore pressure and fracture pressure gradient is too close which is called narrow drilling window. By solving these problems, drilling cost will fall, therefore enabling the industry to be able to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely... 

    Boundary layer suction for high-speed air intakes: A review

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2018 ; 09544100 (ISSN) Sepahi Younsi, J ; Forouzi Feshalami, B ; Maadi, S. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    The paper summarizes recent developments in boundary layer suction for high-speed air intakes. Bleed has been efficiently used in supersonic and hypersonic intakes for three primary reasons: to improve the performance of the intake, to reduce the starting Mach number of the intake, and to postpone the onset of buzz oscillations. A bleed system has many characteristics such as the bleed entrance and exit areas, bleed entrance slant angle and position, and bleed type (slot or porous and ram-scoop or flush). Each of these parameters has significant impacts on the intake performance and stability that have been reviewed in this study. In addition, the effectiveness of other flow control methods... 

    Boundary layer suction for high-speed air intakes: A review

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 233, Issue 9 , 2019 , Pages 3459-3481 ; 09544100 (ISSN) Sepahi Younsi, J ; Forouzi Feshalami, B ; Maadi, S. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    The paper summarizes recent developments in boundary layer suction for high-speed air intakes. Bleed has been efficiently used in supersonic and hypersonic intakes for three primary reasons: to improve the performance of the intake, to reduce the starting Mach number of the intake, and to postpone the onset of buzz oscillations. A bleed system has many characteristics such as the bleed entrance and exit areas, bleed entrance slant angle and position, and bleed type (slot or porous and ram-scoop or flush). Each of these parameters has significant impacts on the intake performance and stability that have been reviewed in this study. In addition, the effectiveness of other flow control methods... 

    Composite system reliability assessment incorporating an interline power-flow controller

    , Article IEEE Transactions on Power Delivery ; Volume 23, Issue 2 , 2008 , Pages 1191-1199 ; 08858977 (ISSN) Moghadasi, S. M ; Kazemi, A ; Fotuhi Firuzabad, M ; Edris, A. A ; Sharif University of Technology
    2008
    Abstract
    The impact of an interline power-flow controller (IPFC) on composite system delivery point and overall system reliability indices is examined in this paper. In this application, the IPFC with dc transmission lines is employed in a system for coordinated control of line impedances of two, distance away, transmission lines with the objective of managing power flows on the two lines. It is also used to balance the real power being transferred between the compensated lines. For this purpose, the reliability model associated with a converter station has been developed and incorporated in an IPFC reliability model. A number of reliability indices are calculated at both the loadpoint and system... 

    Jet-into-crossflow boundary-layer control: Innovation in gas turbine blade cooling

    , Article AIAA Journal ; Volume 45, Issue 12 , May , 2007 , Pages 2910-2925 ; 00011452 (ISSN) Javadi, Kh ; Taeibi Rahni, M ; Darbandi, M ; Sharif University of Technology
    2007
    Abstract
    Jet into crossflow has numerous technological applications, such as in film cooling of gas turbine blades. It has been more than half a century that people have been studying this problem and research is still underway due to its importance and its complexities. This paper is a computational study concerned with film cooling of gas turbine blades. A novel near-wall flow control technique of using staggered arrangement of small injection ports near a film-cooling hole (combined triple jet) is introduced. The fluid injected from the small ports changes the flow pattern downstream, resulting in a considerable enhancement of cooling efficiency. The flowfield computations, governed by the... 

    Power flow control of a matrix converter based micro-turbine distributed generation system

    , Article 2006 IEEE Power Engineering Society General Meeting, PES, Montreal, QC, 18 June 2006 through 22 June 2006 ; 2006 ; 1424404932 (ISBN); 9781424404933 (ISBN) Nikkhajoei, H ; Karimi Ghartemani, M ; Sharif University of Technology
    IEEE Computer Society  2006
    Abstract
    This paper presents a power flow controller for a matrix converter as the power electronic interface between a high-speed micro-turbine generator and a utility distribution system. The matrix converter converts the high-frequency of a micro-turbine generator to a conventional frequency of the utility system, based on a novel switching strategy. The controller regulates magnitude and phase-angle of the converter output voltage to accommodate real and reactive power flow requirements of the utility system. Performance of the matrix converter based microturbine generation system including the power flow controller is evaluated based on digital time-domain simulation studies in the PSCAD/EMTDC... 

    Increasing isp by injecting water into combustion chamber of an underwater SRM

    , Article AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference, Sacramento, CA, 9 July 2006 through 12 July 2006 ; Volume 8 , 2006 , Pages 6088-6093 ; 1563478188 (ISBN); 9781563478185 (ISBN) Tahsini, A. M ; Ebrahimi, M ; Sharif University of Technology
    2006
    Abstract
    In this paper, the effects of water addition to a solid rocket motor (SRM) with an end-burning grain configuration are investigated, numerically. Inviscid quasi one-dimensional conservation equations are discretisked and solved using upwind Roe's scheme together with appropriate boundary conditions. The set of assumptions made to solve the problem are described in detail and the results are presented for several water inlet diameters and pressures. It is shown that, the penetration of a certain volume of water into combustion chamber can result in an ISP increase of up to 14% and therefore a performance enhancement with no extra mass of propellant  

    Locating and parameters setting of unified power flow controller for congestion management and improving the voltage profile

    , Article Asia-Pacific Power and Energy Engineering Conference, APPEEC, 28 March 2010 through 31 March 2010 ; March , 2010 ; 21574839 (ISSN) ; 9781424448135 (ISBN) Hashemzadeh, H ; Ehsan, M ; Sharif University of Technology
    2010
    Abstract
    This paper propose a particle swarm optimization based algorithm for locating Unified power flow controller (UPFC), as well as set its parameters, with static point of view in deregulated electricity markets in order to reduce generation cost, voltage violation and manage congestion. The modeling of UPFC has been adapted based on power injection method. In order to verify and validate the effectiveness of the proposed method, it was applied to 24-bus Reliability Test System (RTS) and the results have been discussed  

    A cost/worth approach to evaluate UPFC impact on ATC

    , Article Journal of Electrical Engineering and Technology ; Vol. 5, issue. 3 , 2010 , p. 389-399 ; ISSN: 19750102 Rajabi Ghahnavieh, A ; Fotuhi Firuzabad, M ; Shahidehpour, M ; Feuillet, R ; Sharif University of Technology
    Abstract
    Available transfer capability (ATC) is a measure of the transfer capability remaining in a transmission system. Application of unified power flow controllers (UPFCs) could have positive impacts on the ATC of some paths while it might have a negative impact on the ATC of other paths. This paper presents an approach to evaluate the impacts of UPFCs on the ATC from a cost/worth point of view. The UPFC application worth is considered as the maximum cost saving in enhancing the ATC of the paths due to the UPFC implementation. The cost saving is considered as the cost of optimal application of other system reinforcement alternatives (except for UPFC) to reach the same ATC level obtained by UPFC... 

    Drag reduction by a multi-point optimised hybrid flow control method for two supercritical airfoils

    , Article European Journal of Computational Mechanics ; Volume 25, Issue 5 , 2016 , Pages 359-387 ; 17797179 (ISSN) Nejati, A ; Mazaheri, K ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    Shock control bump (SCB), suction and blowing are three flow control methods used to control the shock wave/boundary layer interaction to reduce the resulting wave drag in transonic flows. An SCB uses a small local surface deformation to reduce the shock wave strength, while the suction decreases the boundary layer thickness and the blowing delays the flow separation. Here, we will use a multi-point continuous adjoint optimisation scheme to find the optimum design of suction and blowing separately or together, or with the SCB, on two supercritical airfoils, i.e. RAE-5225 and RAE-2822, for a wide range of off-design transonic Mach numbers. The RANS flow equations are solved using the Roe’s... 

    Optimal placement of unified power flow controllers (UPFCs) using mixed-integer non-linear programming (MINLP) method

    , Article 2009 IEEE Power and Energy Society General Meeting, PES '09, 26 July 2009 through 30 July 2009, Calgary, AB ; 2009 ; 9781424442416 (ISBN) Aminifar, F ; Fotuhi Firuzabad, M ; Khodaei, A ; Faried, S. O ; Sharif University of Technology
    Abstract
    Utilization of Unified Power Flow Controllers (UPFCs) can be more beneficial in the restructured power systems due to their capabilities in increasing the transmission line capacities as well as shunt reactive compensation. So, these devices should be installed such that the most benefit can be gained. In this paper, the problem of optimal placement of UPFCs is solved using Mixed-Integer Non-Linear Programming (MINLP) method. Hence, the problem is completely formulated based on this method and is solved using available commercial solvers. The salient feature of this method is having potential to simultaneously determine the optimal location of multi UPFCs. Also, since a full AC Optimal Power... 

    Performance improvement of a supercritical airfoil by a multi-point optimized shock control channel

    , Article Flow, Turbulence and Combustion ; 2017 , Pages 1-29 ; 13866184 (ISSN) Nejati, A ; Mazaheri, K ; Sharif University of Technology
    Abstract
    A shock control channel (SCC) is a flow control method introduced here to control the shock wave/boundarylayer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. An SCC transfers an appropriate amount of mass and momentum from downstream of the shock wave location to its upstream to decrease the pressure gradient across the shock wave and as a result the shock-wave strength is reduced. Here, a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of the SCC. This flow control method is implemented on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow... 

    The application of suction and blowing in performance improvement of transonic airfoils with shock control bump

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 274-292 ; 10263098 (ISSN) Mazaheri, K ; Nejati, A ; Charlang Kiani, K. C ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Shock Control Bump (SCB) reduces the wave drag in transonic ight. To control the boundary layer separation and to reduce the wave drag for two transonic airfoils, RAE-2822 and NACA-64A010, we investigate the application of two flow control methods, i.e. suction and blowing, to add them to the SCB. An adjoint gradient-based optimization algorithm is used to find the optimum shape and location of SCB. The performance of both Hybrid Suction/SCB (HSS) and Hybrid Blowing/SCB (HBS) is a function of the sucked or injected mass flow rate and their position. A parametric study is performed to find the near optimum values of the aerodynamic coefficients and efficiency. A RANS solver is validated and... 

    Flow separation control over an airfoil using dual excitation of DBD plasma actuators

    , Article Aerospace Science and Technology ; Volume 79 , 2018 , Pages 658-668 ; 12709638 (ISSN) Ebrahimi, A ; Hajipour, M ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    This paper investigates flow separation control over an airfoil using dual excitation of DBD plasma actuators as a novel approach. Large eddy simulation is adopted to capture vortical structures within the airfoil wake. Power spectral density and dynamic mode decomposition analyses have been utilized to identify local and global oscillatory behavior associated with flow structures of the wake. Three controlled cases are considered in the present study. In the first case, the wake mode frequency (i.e., the frequency of natural vortex shedding) is used to excite separated shear layers at both the upper surface and the trailing edge of the airfoil, simultaneously. In the second case, the... 

    Wind turbine power improvement utilizing passive flow control with microtab

    , Article Energy ; Volume 150 , 2018 , Pages 575-582 ; 03605442 (ISSN) Ebrahimi, A ; Movahhedi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the effect of deploying microtabs on performance improvement of a horizontal axis wind turbine blade is numerically investigated in three-dimensions. The NREL Phase VI, a stall-regulated upwind wind turbine, is used as the baseline case. Different cases are considered to investigate the effects of spanwise location as well as the height variation of tabs along the blade span, on the flow over the rotor blade. In all cases, the tab is located at 95% chord of the airfoil section on the lower surface of the blade. Results reveal that locating microtabs at the outboard part of the blade has a greater impact on the rotor performance than the inboard part. However, both cases... 

    Performance improvement of a supercritical airfoil by a multi-point optimized shock control channel

    , Article Flow, Turbulence and Combustion ; Volume 100, Issue 3 , 2018 , Pages 675-703 ; 13866184 (ISSN) Nejati, A ; Mazaheri, K ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    A shock control channel (SCC) is a flow control method introduced here to control the shock wave/boundarylayer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. An SCC transfers an appropriate amount of mass and momentum from downstream of the shock wave location to its upstream to decrease the pressure gradient across the shock wave and as a result the shock-wave strength is reduced. Here, a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of the SCC. This flow control method is implemented on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow... 

    Harmonic effects optimization at a system level using a harmonic power flow controller

    , Article Turkish Journal of Electrical Engineering and Computer Sciences ; Volume 28, Issue 5 , 2020 , Pages 2586-2601 Mehri, R ; Mokhtari, H ; Sharif University of Technology
    Turkiye Klinikleri  2020
    Abstract
    Increase of nonlinear loads in industries has resulted in high levels of harmonic currents and consequently harmonic voltages in power networks. Harmonics have several negative effects such as higher energy losses and equipment life reduction. To reduce the levels of harmonics in power networks, different methods of harmonic suppression have been employed. The basic idea in all of these methods is to prevent harmonics from flowing into a power network at customer sides and the point of common coupling (PCC). Due to the costs, none of the existing mitigating methods result in a harmonic-free power system. The remaining harmonic currents, which rotate in a power network according to the system...