Loading...
Search for: flow-patterns
0.009 seconds
Total 95 records

    Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor

    , Article International Journal of Hydrogen Energy ; Volume 34, Issue 3 , 2009 , Pages 1275-1291 ; 03603199 (ISSN) Dehkordi, A.M ; Memari, M ; Sharif University of Technology
    2009
    Abstract
    A compartment model was developed to describe the flow pattern of gas within the dense zone of a membrane-assisted fluidized-bed reactor (MAFBR), in the bubbling mode of operation for steam reforming of methane both with (adiabatic) and without (isothermal) entering oxygen. Considering such a flow pattern and using the experimental data reported elsewhere [Roy S, Pruden BB, Adris AM, Grace JR, Lim CJ. Fluidized-bed steam methane reforming with oxygen input. Chem Eng Sci 1999; 54:2095-2102.], the parameters of the developed model (i.e., number of compartments for the bubble and emulsion phases) were determined and fair agreements were obtained between model predictions and experimental data.... 

    Vorticity as a measure of heterogeneity for improving coarse grid generation

    , Article Petroleum Geoscience ; Volume 15, Issue 1 , 2009 , Pages 91-102 ; 13540793 (ISSN) Mahani, H ; Muggeridge, A. H ; Ashjari, M. A ; Sharif University of Technology
    2009
    Abstract
    This paper presents a novel coarse grid generation technique based on using vorticity as a measure of the impact of heterogeneity on flow. Vorticity is a maximum when the total flow is high and perpendicular to a large permeability gradient. Maps of vorticity were generated from single-phase flow simulations and used to generate coarse simulation grids from finely gridded geological models. The resulting grid was more refined in areas of high vorticity and coarser in areas of low vorticity. The method is first demonstrated on a simple five-layered model before being applied to three, 2D models of geologically realistic heterogeneity. The homogenized model generated from vorticity maps shows... 

    Hysteretic heat transfer study of liquid–liquid two-phase flow in a T-junction microchannel

    , Article International Journal of Heat and Fluid Flow ; Volume 77 , 2019 , Pages 366-376 ; 0142727X (ISSN) Moezzi, M ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Liquid–liquid two-phase flow in microchannels is capable of boosting the heat removal rate in cooling processes. Formation of different two-phase flow patterns which affect the heat transfer rate is numerically investigated here in a T-junction containing water-oil flow. For this purpose, the finite element method (FEM)is applied to solve the unsteady two-phase Navier–Stokes equations along with the level set (LS)equation in order to capture the interface between phases. It is shown that the two-phase flow pattern in microchannels depends on the flow initial condition which causes hysteresis effect in two-phase flow. In this study, the hysteresis is observed in flow pattern and consequently... 

    Flow asymmetry in a y-shaped diverterless supersonic inlet: A novel finding

    , Article AIAA Journal ; Volume 58, Issue 6 , 2020 , Pages 2609-2620 Askari, R ; Soltani, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2020
    Abstract
    Extensive wind-tunnel tests were performed on a Y-shaped diverterless supersonic inlet (DSI). All tests were conducted at a free stream Mach number of M∞ 1.65, the design Mach number for this inlet, and at both zero degrees angle of attack (AOA) and angle of sideslip (AOS). The experiments were performed at various inlet operating conditions comprising supercritical, critical, and subcritical conditions that covered almost all ranges of the engine operating for this DSI. The results showed that the DSI had relatively acceptable performance characteristics when operating at its design condition. A symmetric supersonic flow pattern was observed at both supercritical and critical operating... 

    Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field

    , Article Applied Thermal Engineering ; Volume 164 , 2020 Bezaatpour, M ; Rostamzadeh, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Compact heat exchangers as modern industrial devices are designed to improve heat recovery and saving energy processes in restricted spaces. In the current study, effect of a uniform external magnetic field with Fe3O4/water nanofluid for heat transfer enhancement of a fin-and-tube compact heat exchanger is numerically investigated. The obtained results are verified by the available experimental data to demonstrate accuracy of the present simulation. The results indicated that the local and average heat transfer coefficients increase around the tubes in the presence of an external magnetic field due to the vortex formation behind the tubes as well as the flow pattern alteration in the heat... 

    Investigation and visualization of surfactant effect on flow pattern and performance of pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 139, Issue 3 , 2020 , Pages 2099-2107 Gandomkar, A ; Kalan, K ; Vandadi, M ; Shafii, M. B ; Saidi, M. H ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    Pulsating heat pipes (PHPs) are one of the new devices used for cooling in several applications such as electronic and aerospace systems. Their low cost, effectiveness at various conditions, being equipped for passive energy conversion, and well distribution of temperature compared to conventional heat pipes are among the reasons of their popularity. To investigate the effect of surface tension of the working fluid on the behavior of PHPs, a copper heat pipe is fabricated with inner and outer diameters of 2 mm and 4 mm, respectively. Five different concentrations of cetrimonium bromide (C-Tab) surfactant are dissolved in water and are tested with a filling ratio of 50% (± 1%). A piece of... 

    Influence of lakebed sediment deposit on the interaction of hypersaline lake and groundwater: A simplified case of lake Urmia, Iran

    , Article Journal of Hydrology ; Volume 588 , 2020 Sheibani, S ; Ataie Ashtiani, B ; Safaie, A ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Lake Urmia, which was once the second-largest saline lake in the world, has been shrinking dramatically. Moreover, Lake Urmia has become supersaturated with total salinity averaging more than 350 g/l. Salt precipitation and dissolved materials brought by inflowing rivers have formed a layer of sediment with low hydraulic conductivity on the lakebed. Considering the flat bathymetry of Lake Urmia, we conducted a series of numerical simulation scenarios to study the groundwater flow pattern in the vicinity of the hypersaline Lake Urmia using COMSOL Multiphysics®. In the first step, we performed the simulations in steady-state conditions. Secondly, we simulated the lake level fall in 10 years at... 

    Modelling and simulation of equiaxed dendritic structures permeability for Pb-Sn alloys

    , Article Materials Science and Technology ; Volume 24, Issue 12 , 2008 , Pages 1444-1451 ; 02670836 (ISSN) Mirbagheri, M. H ; Khajeh, E ; Sharif University of Technology
    2008
    Abstract
    In this investigation, the permeability of interdendritic liquid flow through the equiaxial mushy zone has been modelled for Pb-Sn alloys based on experimental measurements. In the present work by solving Navier-Stokes equation, the flow pattern around the equiaxed dendrite has been obtained and then permeability has been determined by applying Darcy's law. Numerical determined values of permeabilities have been analysed by the use of Statistical Package for the Social Sciences (SPSS) statistical software. Then an experimental method has been used to measure the permeability for flow through equiaxial mushy zone of Pb-Sn alloys. Results show that increasing the solid fraction and... 

    Experimental and numerical investigation of squat submarines hydrodynamic performances

    , Article Ocean Engineering ; Volume 266 , 2022 ; 00298018 (ISSN) Sarraf, S ; Abbaspour, M ; Dolatshahi, K. M ; Sarraf, S ; Sani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper empirically examines the hydrodynamic performances of squat submarines under the resistance and wave tests beside numerical investigation of pressure drag reduction techniques. Despite vast information about the operation of the streamlined fluid vessels, there is not much information about the geometries and hydrodynamic behaviors of squat vessels with L/D ratios below four. This study experimentally investigates the impacts of various relative depths and flow inclinations, intending to find drag, heave, and sway forces at the velocities of 0.5, 1.0, 1.5, 2.0, and 2.5-m/s. A one-tenth scaled model of a squat submarine is examined under the resistance and wave train scenarios as... 

    Flow and performance characteristics of twin-entry radial turbine under full and extreme partial admission conditions

    , Article Archive of Applied Mechanics ; Volume 79, Issue 12 , 2009 , Pages 1127-1143 ; 09391533 (ISSN) Hajilouy Benisi, A ; Rad, M ; Shahhosseini, M. R ; Sharif University of Technology
    Abstract
    This paper presents numerical and experimental investigation of the performance and internal flow field characteristics of twin-entry radial inflow turbines at full and extreme partial admission conditions. The turbine is tested on a turbocharger test facility, which was developed for small and medium size turbochargers. Experimental results show that the lowest efficiency corresponds to extreme conditions. Therefore, flow field analyzing is employed to consider these conditions. The flow pattern in the volute and impeller of a twin-entry turbine is analyzed using an in-house fully three-dimensional viscous flow solver. The computational performance results are compared with the experimental... 

    Catalytic wet peroxide oxidation of phenol in a new two-impinging-jets reactor

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 23 , 2009 , Pages 10619-10626 ; 08885885 (ISSN) Dehkordi, A. M ; Ebrahimi, A. A ; Sharif University of Technology
    Abstract
    The catalytic wet peroxide oxidation (CWPO) of phenol with activated carbon (AC) as the catalyst has been successfully tested in a novel type of two-impinging-jets reactor (TIJR). The TIJR is characterized by a high-intensity reaction chamber, which is separated by a perforated plate from other parts of the reactor. The perforated plate was used as a filter to keep the catalyst particles within the reaction chamber. The influences of various operating and design parameters such as jet Reynolds number, feed flow rate, internozzle distance, and the jet diameter on the performance capability of the TIJR were investigated. As a result of the impinging process, turbulence, complex trajectory of... 

    Flow physics exploration of surface tension driven flows

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 518 , 2017 , Pages 30-45 ; 09277757 (ISSN) Javadi, K ; Moezzi Rafie, H ; Goodarzi Ardakani, V ; Javadi, A ; Miller, R ; Sharif University of Technology
    Abstract
    Surface tension driven passive micro-pumping relies mainly on the surface tension properties. To have control over surface tension driven passive micro-pumps (STD-PMPs), it is essential to understand the physical background of the fluid flow in these pumps. Hence, the purpose of this work is to give an exploration of the flow physics of a STD-PMP. In this regard, computer simulation is used to give detailed information about the flow pattern and physical phenomena at different conditions. To this end, a droplet of water, with a specified diameter, is placed onto an entry port connected to another droplet at the exit port via a microchannel. The results indicate that the pumping process, in... 

    Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system

    , Article Applied Soft Computing Journal ; Volume 9, Issue 2 , 2009 , Pages 746-755 ; 15684946 (ISSN) Zounemat Kermani, M ; Beheshti, A. A ; Ataie Ashtiani, B ; Sabbagh Yazdi, S. R ; Sharif University of Technology
    2009
    Abstract
    The process of local scour around bridge piers is fundamentally complex due to the three-dimensional flow patterns interacting with bed materials. For geotechnical and economical reasons, multiple pile bridge piers have become more and more popular in bridge design. Although many studies have been carried out to develop relationships for the maximum scour depth at pile groups under clear-water scour condition, existing methods do not always produce reasonable results for scour predictions. It is partly due to the complexity of the phenomenon involved and partly because of limitations of the traditional analytical tool of statistical regression. This paper addresses the latter part and... 

    Numerical investigation of fluid flow and heat transfer characteristics in parallel flow single layer microchannels

    , Article Scientia Iranica ; Volume 16, Issue 4 B , 2009 , Pages 313-331 ; 10263098 (ISSN) Asgari, O ; Saidi, M. H ; Sharif University of Technology
    2009
    Abstract
    Heat generation from Very Large-Scale Integrated (VLSI) circuits increases with the development of high-density integrated circuit technology. One of the efficient techniques is liquid cooling by using a microchannel heat sink. Numerical simulations on the microchannel heat sink in the literature are mainly two dimensional. The purpose of the present study is to develop a three-dimensional procedure to investigate flow and conjugate heat transfer in the microchannel heat sink for electronic packaging applications. A finite volume numerical code with a multigrid technique, based on an additive correction multigrid (AC-MG) scheme, which is a high-performance solver, is developed to solve the... 

    The effect of hematocrit and nanoparticles diameter on hemodynamic parameters and drug delivery in abdominal aortic aneurysm with consideration of blood pulsatile flow

    , Article Computer Methods and Programs in Biomedicine ; Volume 195 , October , 2020 Jafarzadeh, S ; Nasiri Sadr, A ; Kaffash, E ; Goudarzi, S ; Golab, E ; Karimipour, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: The present article has simulated to investigate the efficient hemodynamic parameters, the drug persistence, and drug distribution on an abdominal aortic aneurysm. Methods: Blood as a non-Newtonian fluid enters the artery acting as a real pulse waveform; its behavior is dependent on hematocrit and strain rate. In this simulation of computational fluid dynamic, magnetic nanoparticles of iron oxide which were in advance coated with the drug, are injected into the artery during a cardiac cycle. A two-phase model was applied to investigate the distribution of these carriers. Results: The results are presented for different hematocrits and the nanoparticle diameter. It...