Loading...
Search for: force
0.018 seconds
Total 1380 records

    Numerical/Experimental Investigation of Semi-Spherical Bumps on Separation Control and Lift Enhancement

    , M.Sc. Thesis Sharif University of Technology Lotfikar, Mohammad Amin (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    The main purpose of the current study is to control the boundary layer of the flow passing over the wing and the lift force enhancement. In this research has been tried to introduce a new generation of passive flow control and use bumpy surface structures to control the separated flow and increase the aerodynamic efficiency. Therefore, the wing with the hawk bird’s airfoil section has been designated. Then, assuming a viscous, incompressible flow and a low Reynolds number range (about 2 × 105), the flow formation and boundary layer development on this wing has been investigated. Subsequently, bump structures have been settled on the upper surface of this wing. The numerical simulations have... 

    Evaluation of 1991 NIOSH Lifting Equation in Controlling the Biomechanical Loads of the Human Spine

    , M.Sc. Thesis Sharif University of Technology Lesani, Ali (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    The 1991 NIOSH Lifting Equation (NLE) is widely used to assess risk of injury to the spine by providing estimates of the recommended weight limit (RWL) in hands. The present study uses two biomechanical models of the spine to verify whether the RWL generates L5-S1 loads within the limits (e.g., 3400 N for compression recommended by NIOSH and 1000 N for shear recommended in some studies).Severallifting activities are simulated here to evaluate the RWL by the NLE and the L5-S1 loads by the models. In lifting activities involving moderate to large forward trunk flexion, the estimated RWL generates L5-S1 spine loads exceeding the recommended limits. The NIOSH vertical multiplier is the likely... 

    Choosing the Optimal Assembly Angle of Multi-Part Elastic Rotor Components with the Aim of Passing Critical Speeds

    , M.Sc. Thesis Sharif University of Technology Ghamari, Mohammad Amin (Author) ; Dehghani Firouzabadi, Ruhollah (Supervisor) ; Amirzadegan, Sadegh (Co-Supervisor)
    Abstract
    Multi-part rotating parts are used in various industries with very high revolutions. Therefore, the method of assembling each part and keeping the axis of rotation of each part close to the axis passing through two supports (bearings) is important. In this research, three main steps are followed, the development of the differential equations governing the multi-part rotating system and the calculation of the range of oscillations created at the critical points, and then the calculation of the optimal assembly angles with the aim of reducing the introduced oscillations, and finally the discussion of crossing the speeds A crisis is being investigated. The method of obtaining the system of... 

    Experimental Investigation on Laminar Forced Convection Heat Transfer of Ferrofluids Under an Alternating Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Ghofrani, Ali (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    This research study presents an experimental investigation on forced convection heat transfer of an aqueous ferrofluid flow passing through a circular copper tube in the presence of an alternating magnetic field. The flow passes through the tube under a uniform heat flux and laminar flow conditions. The primary objective was to intensify the particle migration and disturbance of the boundary layer by utilizing the magnetic field effect on the nanoparticles for more heat transfer enhancement. Complicated convection regimes caused by interactions between magnetic nanoparticles under various conditions were studied. The process of heat transfer was examined with different volume concentrations... 

    Non-linear Vibration Analysis of Timoshenko Curved Beam with Non-linear End Supports

    , M.Sc. Thesis Sharif University of Technology Gorbanzadeh Makuei, Behzad (Author) ; Mohammad Navazi, Hossein (Supervisor)
    Abstract
    Three dimensional analyses have been carried out for predicting the behavior of the jointed rock slope of the abutments of the bridge which is proposed to be constructed across the river Karun4 in Iran using 3DEC. The rock overall slope angle is approximately 60 to 70 degrees, composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Since 3DEC is a three-dimensional numerical code, utilizes a Lagrangian calculation scheme to model large movements and deformations of a blocky system, allows for modeling of large movements and rotations, and including complete detachment of rigid or deformable discrete blocks has been utilized for the... 

    Modeling of Force Interactions between Tip of Atomic Force Microscopy in Trolling Mode and Environment

    , M.Sc. Thesis Sharif University of Technology Falsafi, Ali (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    Submerging of the Micro-beam of the AFM is indispensible in case of imaging bio-samples. (Bio-samples are unstable in non-aquos environment.), so hydrodynamical interaction of liquid and beam (viscous and meniscus forces) will result into quality factor decrease. This will cause image resolution decrement as well as damage to the sample because of large tip-sample forces during imaging of the bio-samples. The proposed method “Trolling mode AFM” keeps the micro-beam of the AFM out of the liquid, by adding a nano-needle to the end of the AFM tip. This would lead to resolve the aforementioned problems. Modeling of a part of the operation of this mechanism was done in this thesis, in order to... 

    Designing and Implementation of a Web-Based Cyber-Physical System for a CNC Milling Machine

    , Ph.D. Dissertation Sharif University of Technology Forootan, Mahmood Reza (Author) ; Akbari, Javad (Supervisor) ; Ghorbani, Mohammad (Co-Supervisor)
    Abstract
    In this work, a virtualized ball-end milling model is presented in Unity game engine environment, in which the machining process is simulated by proposing a new geometric approach. The model calculates and illustrates cutter-workpiece engagement area and cutting forces in a real-time manner. To calculate cutter-workpiece engagement, the workpiece’s top surface is considered a set of nodes. Then, using a new geometric method, the engagement area is calculated at any node on the engaging surface. Utilizing the calculated engagement area and adopting mechanistic force model, the cutting forces applied from each node on the workpiece surface to the tool’s cutting edge are calculated. The cutting... 

    Analysis of Forced Vibration of Micro-Plates Based On A Modified Couple Stress Theory

    , M.Sc. Thesis Sharif University of Technology Farhadpur, Meraj (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Vibration analysis of micro-structures has been a major topic in recent years. Among them micro-plates play an important role in micro- and nano-electromechanical systems (MEMS and NEMS), e.g. micropumps, micromirrors, and microresonators. Some experimental observations revealed the size-dependent mechanical behavior in micro-scaled structures. Because of the incapability of the classical continuum theory to interpret the experimentally-detected small-scale effects in mechanical behavior of micro-scaled systems, non-classical theories should be used to deal with micron and sub-micron structures. Couple stress theory is one of the non-classical theories with only one length scale parameter. A... 

    Design a Model Predictive Control System for Empowerment and Rehabilitation of a Lower Limb Exoskeleton

    , M.Sc. Thesis Sharif University of Technology Farghadani, Sahand (Author) ; Vosoughi, Gholamreza (Supervisor)
    Abstract
    With the development of technology in the field of control, biomechanics and robotics, wearable robots have found many applications in the field of rehabilitation and empowerment. In the empowerment phase, due to the interaction of these robots with humans, it is necessary to manage the interaction forces between the robot and humans with the help of appropriate control methods. One of the applications of these robots is when a person wants to carry a heavy load attached to the structure of the robot and the robot should be able to transfer the force caused by this load to the ground. At this time, humans should not be exposed to this load and the relationship between the robot and humans... 

    Factors Affecting Labor Market Participation Rate of Married Women in Iran

    , M.Sc. Thesis Sharif University of Technology Farahzadi, Shadi (Author) ; Rahmati, Mohammad Hossein (Supervisor)
    Abstract
    Iran has one of the lowest rates of female participation in the labor market among countries. In 2015, for every 100 men over 10 years old, only 21 women’s labor force participation was confirmed. This paper attemps to determine factors which cause low participation rate of women, particularly married ones. For this purpose, using structural estimation method, a dynamic discrete choice model was built, and estimated with means of simulated method of moments (SSM). The results indicated that the most important factor for low participation rate of married woman is children cost. Elimination of this cost would increase participation rate of married women about 30 percantage points  

    Design and Fabrication of a Centrifugal Microfluidic System to DNA Extraction

    , M.Sc. Thesis Sharif University of Technology Fathi Ganje Lou, Ali (Author) ; Farhadi, Fathollah (Supervisor) ; Saadatmand, Maryam (Supervisor) ; Parsa Yeganeh, Laleh (Co-Supervisor)
    Abstract
    Deoxyribonucleic acid (DNA) extraction, as one of the most important steps in modern molecular diagnostics, is the process by which DNA is separated from intracellular materials like proteins, membranes, and other materials contained in the cell. Microfluidic technology enables sophisticated, time-consuming and costly experiments with minimal use of raw materials, time and cost and acceptable accuracy. The predominant advantages of centrifugal microfluidic systems are utilizing centrifugal force to generate propulsion without the need for a pump, and eliminating the need for experts to run the system. Various fluidic operations such as valving, mixing, metering, heating, and sample... 

    CFD Simulation of Brine Droplets in Crude Oil under the Influence of Electric Field in Oil Desalter

    , M.Sc. Thesis Sharif University of Technology Ghaffari, Ali (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    Brine in crude oil causes many problems that underpin the importance of its separation. In recent years brine in crude oil has been increased with increase of the oil fields lifetime and its separation has been more important. One of the most effective separation methods is electrocoalescence. In this research, the simulation of brine droplets motion and their coalescence under the effect of electric field have been investigated by using the Computational Fluid Dynamics method and the droplets size distribution has been calculated under different values of electric field magnitude. The motion of two single brine droplets in stagnant oil phase and the behavior of many numbers of droplets in... 

    Modeling Possibility of Deep Water Spar Platform by Considering Depth Limitation

    , M.Sc. Thesis Sharif University of Technology Alipour Sarabi, Vahid (Author) ; Tabeshpour, Mohammad Reza (Supervisor)
    Abstract
    Every day requirements for oil, gas and exploration in deep water have pushed offshore industries into deeper water. Oil production is expensive, so a designed platform should be cost saving. The clear and logical part is that, testing a model will be an important part of these kind of researches. In this thesis we are trying to obtain numerical results from ANSYS AQWA and experimental results for surge, heave and pitch motions, then compare experimental results with numerical one. Second order effects are ignored in designs and experiments because of laboratory conditions and limits that we are faced with in there. 1/250 scale ratio has been chosen because of limits. First we get into... 

    Using Surface Properties of Immiscible Fluids in Capillary Tubes for Identification and Separation of Cancerous Blood Cells

    , M.Sc. Thesis Sharif University of Technology Alinejad, Amin (Author) ; Ayatollahi, Shahabodin (Supervisor) ; Vossoughi, Manochehr (Supervisor)
    Abstract
    Cancer has been known as one of the main reasons for disease-related deaths in the last decades. Early diagnosis could significantly reduce the level of fatality chances. Among the known cancer types, lung cancer is one of the most malignant ones. The common diagnosticmethods are expensive and using high-technology methods; therefore, the introduction of simple and cheap methods is very urgent to detect it. In this project, surface and interfacial tension measurement of cancerous and normal lung cells have been investigated as an easy detection technique. Among the common measurement methods, Pendant Drop and Capillary height techniques have been utilized in this research work. The obtained... 

    Intelligent Force Control for Hydraulic Manipulator within the Impedance Control Framework

    , M.Sc. Thesis Sharif University of Technology Alimohammadi, Hossein (Author) ; Khayyat, Amir Ali Akbar (Supervisor)
    Abstract
    The main concept of this thesis is to simulate, develop, and analyze the performance of force control method by applying to a Unimate MK-II hydraulic manipulator. In this investigation, simulation studies are based on the concept of impedance control technique. Position-based formulation of impedance control is employed. First in this research, a PID controller is employed and is shown to be capable of performing position control task precisely despite the fact that inertia, joint stiction, valve deadband and other nonlinearities are presented. Although trajectory tracking is performed well after several investigations, we have concluded that the impedance control cannot perform a desirable... 

    Design and Analysis of a Force-Isotropic Underactuated Humanoid Hand

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Milad (Author) ; Zohoor, Hassan (Supervisor)
    Abstract
    Robots have been widely used for various applications, especially during the last decades. Robots are made of several parts, in which, "Hand" is one of the most important of those. Hands are designed according to their applications and are not necessarily like human ones. Development of humanoid robots, however, brings a special place to human-like hands. In this research, a force-isotropic underactuated finger with two phalanxes and one actuator is designed, considering design limitations and through static analysis. Tendon, cam and mechanical lock (ratchet gear) are among the main components which have been considered in the finger design. Then, a model was fabricated and tested in order... 

    Impact Investigation between two Satellites during Central Docking Process

    , M.Sc. Thesis Sharif University of Technology Alijani, Mohammad Reza (Author) ; Haddadpour, Hasan (Supervisor) ; Shakhesi, Saeed (Co-Supervisor)
    Abstract
    One of the key issues in the operations of on orbit servicing to unmanned satellites is to provide a safe and reliable docking process. In this thesis, the dynamic behavior of a flexible probe in the central docking mechanism of unmanned satellites is investigated. For this purpose, first a dynamic analysis software has been applied to build a three dimensional model with the assumption of flexible clamped beam as a shock absorber, finally, the impact phenomone is simulated. therefore, in addition to solving a three-dimensional problem and studying the impact phenomenon between chaser and target satellite, it is possible to consider the parameters such as the type of connection between the... 

    Experimental Investigation of Spin on Rotating Body at Supersonic and Transonic Flow

    , Ph.D. Dissertation Sharif University of Technology Askary Seyyed Lashkari, Farshid (Author) ; Soltani, Mohamd Reaza (Supervisor) ; Farahani, Mohamad (Co-Supervisor)
    Abstract
    One of the methods for the stability of the projectile is its rotation. The rotational velocity of the body surface induces velocity to the adjacent flow, thus changing the shape of the boundary layer, and due to the change in the thickness distribution of the boundary layer, the effective aerodynamic shape of the body also changes, which causes a force perpendicular to the angle of attack.This effect is called the Magnus effect. Since the force created by the rotation is an undamped force, the possibility of dynamic instability is very likely. There is no comprehensive analytical method that can accurately calculate its value for a wide range of projectiles.Due to the effect of Magnus... 

    Simulation of Imaging in Trolling Mode Atomic Force Microscopy by Molecular Dynamics Method

    , M.Sc. Thesis Sharif University of Technology Abdi Nemat Abad, Ahmad (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, has major drawback for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced “Trolling Mode” (TR-Mode) AFM resolves this complication utilizing a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle – liquid interface on the performance of the AFM, including the imaging capability in liquid. Also... 

    Entanglement and Decoherence in Optomechanical Systems Coupled through Photothermal Effects

    , Ph.D. Dissertation Sharif University of Technology Abdi, Mehdi (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    Optomechanical systems have attracted considerable attention in the last decade. Such a raising prominence is mainly due to its capability in providing new insight into the quantum behavior of macroscopic objects and exploring the interface between quantum and classical mechanics. Alongside this fundamental quest, cavity optomechanics has many other benefits, ranging from very precise measurements on forces and positions to quantum information processing. In this thesis, we investigate quantum properties of such systems. Particularly, we study cooling of the mechanical resonator toward its ground state and the entanglement between this mechanical resonator and the cavity field. Cooling the...