Loading...
Search for: fourier-transform-infrared
0.022 seconds
Total 495 records

    Removal of methylene blue dye from aqueous solutions using carboxymethyl-β-Cyclodextrin-Fe3O4 nanocomposite: Thermodynamics and kinetics of adsorption process

    , Article Russian Journal of Physical Chemistry A ; Volume 96, Issue 2 , 2022 , Pages 371-380 ; 00360244 (ISSN) Ghazimokri, H.S ; Aghaie, H ; Monajjemi, M ; Gholami, M. R ; Sharif University of Technology
    Pleiades journals  2022
    Abstract
    Abstract: The applicability of the synthesized carboxymethyl-β-cyclodextrin-Fe3O4 nanocomposite (CM‑β-CD-Fe3O4NPs) as a novel adsorbent for eliminating Methylene blue dye (MB) from aqueous media was investigated. Various techniques including Brunauer Emmett Teller analysis (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been used to characterize this novel adsorbent. The effect of initial concentration (C0), pH, adsorbent dosage (dose), contact time (tc), and temperature (T, K) on the removal percentage (Ad%) of MB dye onto CM-β-CD-Fe3O4NPs was studied, and the optimum value... 

    Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis(2-aminonicotinato) copper(II) microflakes

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 25, Issue 11 , November , 2015 , Pages 3634-3642 ; 10036326 (ISSN) Tadjarodi, A ; Akhavan, O ; Bijanzad, K ; Sharif University of Technology
    Nonferrous Metals Society of China  2015
    Abstract
    An easy method for preparing CuO nanoparticles incorporated in a mesoporous structure was presented based on the thermal decomposition of a copper complex. The novel copper coordination compound of [Cu(anic)2]·0.75H2O (anic= 2-aminonicotinate) with the microflake morphology was synthesized through the reaction of 2-aminonicotinic acid (Hanic) and copper(II) nitrate. Using elemental analysis and Fourier transform infrared (FTIR) spectroscopy, the chemical composition of CuC12H11.5N4O4.75 was proposed. Calcination process at 550 °C for 4 h transformed the microflakes into CuO nanoparticles incorporated in a mesoporous structure. The FTIR peaks assigned to 2-aminonicotinate were completely... 

    Biodegradation behavior of polymethyl methacrylate−bioactive glass 45S5 composite coated magnesium in simulated body fluid

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 32, Issue 7 , 2022 , Pages 2216-2228 ; 10036326 (ISSN) ROUEIN, Z ; Jafari, H ; Pishbin, F ; Mohammadi, R ; Simchi, A ; Sharif University of Technology
    Nonferrous Metals Society of China  2022
    Abstract
    The biodegradation behavior of Mg, coated by polymethyl methacrylate as well as polymethyl methacrylate (PMMA)−bioactive glass (BG) composite was investigated. Electrophoretic deposition and dip coating techniques were adopted to prepare composite coating using a suspension of different percentages of the above two chemical materials. The deposited coatings were characterized using SEM, EDS, FTIR, and water contact angle measurements. Biodegradation behavior study of the coated Mg was performed using linear polarization, impedance spectroscopy, and immersion tests in simulated body fluid. The compact and homogeneous composite coating was developed as evidenced by electron microscopy results.... 

    Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing

    , Article Materials ; Volume 8, Issue 9 , 2015 , Pages 6401-6418 ; 19961944 (ISSN) Ostadhossein, F ; Mahmoudi, N ; Morales Cid, G ; Tamjid, E ; Navas Martos, F. J ; Soriano Cuadrado, B ; Paniza, J. M. L ; Simchi, A ; Sharif University of Technology
    MDPI AG  2015
    Abstract
    Chitosan/bacterial cellulose composite films containing diamond nanoparticles (NDs) with potential application as wound dressing are introduced. Microstructural studies show that NDs are uniformly dispersed in the matrix, although slight agglomeration at concentrations above 2 wt % is seen. Fourier transform infrared spectroscopy reveals formation of hydrogen bonds between NDs and the polymer matrix. X-ray diffraction analysis indicates reduced crystallinity of the polymer matrix in the presence of NDs. Approximately 3.5-fold increase in the elastic modulus of the composite film is obtained by the addition of 2 wt % NDs. The results of colorimetric analysis show that the composite films are... 

    Fabrication and characterization of core-shell electrospun fibrous mats containing medicinal herbs for wound healing and skin tissue engineering

    , Article Marine Drugs ; Volume 17, Issue 1 , 2019 ; 16603397 (ISSN) Zahedi, E ; Esmaeili, A ; Eslahi, N ; Shokrgozar, M. A ; Simchi, A ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Nanofibrous structures mimicking the native extracellular matrix have attracted considerable attention for biomedical applications. The present study aims to design and produce drug-eluting core-shell fibrous scaffolds for wound healing and skin tissue engineering. Aloe vera extracts were encapsulated inside polymer fibers containing chitosan, polycaprolactone, and keratin using the co-axial electrospinning technique. Electron microscopic studies show that continuous and uniform fibers with an average diameter of 209 ± 47 nm were successfully fabricated. The fibers have a core-shell structure with a shell thickness of about 90 nm, as confirmed by transmission electron microscopy. By... 

    Porphyrin molecules decorated on metal–organic frameworks for multi-functional biomedical applications

    , Article Biomolecules ; Volume 11, Issue 11 , 2021 ; 2218273X (ISSN) Rabiee, N ; Rabiee, M ; Sojdeh, S ; Fatahi, Y ; Dinarvand, R ; Safarkhani, M ; Ahmadi, S ; Daneshgar, H ; Radmanesh, F ; Maghsoudi, S ; Bagherzadeh, M ; Varma, R. S ; Mostafavi, E ; Sharif University of Technology
    MDPI  2021
    Abstract
    Metal–organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin’ nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical... 

    Formulation and characterization of poly (ethylene glycol)-coated core-shell methionine magnetic nanoparticles as a carrier for naproxen delivery: growth inhibition of cancer cells

    , Article Cancers ; Volume 14, Issue 7 , 2022 ; 20726694 (ISSN) Yeganeh, F. E ; Yeganeh, A. E ; Yousefi, M ; Far, B. F ; Akbarzadeh, I ; Bokov, D. O ; Raahemifar, K ; Soltani, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    An efficient and selective drug delivery vehicle for cancer cells can remarkably improve therapeutic approaches. In this study, we focused on the synthesis and characterization of magnetic Ni1−x Cox Fe2 O4 nanoparticles (NPs) coated with two layers of methionine and polyethylene glycol to increase the loading capacity and lower toxicity to serve as an efficient drug car-rier. Ni1−x Cox Fe2 O4 @Methionine@PEG NPs were synthesized by a reflux method then charac-terized by FTIR, XRD, FESEM, TEM, and VSM. Naproxen was used as a model drug and its loading and release in the vehicles were evaluated. The results for loading efficiency showed 1 mg of Ni1−x Cox Fe2 O4 @Methionine@PEG NPs could load... 

    Immobilization of laccase from trametes hirsuta onto CMC coated magnetic nanoparticles

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 33, Issue 4 , 2020 , Pages 513-519 Sadeghzadeh, S ; Ghazvini, S ; Hejazi, S ; Yaghmaei, S ; Ghobadi Nejad, Z ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    In this study Fe3O4/CMC magnetic nanoparticles were synthesized through co-precipitation method. Afterward, laccase from Trametes hirsuta was immobilized onto Carboxymethyl cellulose (CMC)-coated magnetic Fe3O4 nanoparticles by covalent bonding between carboxyl groups of carboxymethyl cellulose and amine group of laccases. Also, the resulted magnetic nanoparticles and immobilized laccase were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and dynamic light scattering (DLS) analysis. Moreover, the vital factors in enzyme immobilization, such as contact time, amount of N-hydroxysuccinimide (NHS), and the amount of nanoparticles were... 

    Hydrothermal synthesis of aligned Hydroxyapatite nanorods with ultra-high crystallinity

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 109-116 ; 1728-144X (ISSN) Manafi, S ; Rahimipour, M. R ; Yazdani, B ; Sadrnezhaad, S. K ; Amin, M. H ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH 3(CH2)15N+(CH3) 3Br-) was designated as CTAP)/Ca(NO3) 2/ (NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystal HAp nanorods with diameter of 20 ± 10 nm and length of 80 ± 20 nm, was introduced. Crystal phases were determined by X-ray diffraction (XRD). Scanning electron microscope (SEM) was applied to investigate the morphology. The microstructure of the HAp products were further observed by transmission electron microscope (TEM) and high... 

    The role of polyethylene glycol size in chemical spectra, cytotoxicity, and release of pegylated nanoliposomal cisplatin

    , Article Assay and Drug Development Technologies ; Volume 17, Issue 5 , 2019 , Pages 231-239 ; 1540658X (ISSN) Shirzad, M ; Jamehbozorgi, S ; Akbarzadeh, I ; Aghabozorg, H. R ; Amini, A ; Sharif University of Technology
    Mary Ann Liebert Inc  2019
    Abstract
    This study aimed to synthesize methoxy polyethylene glycol propionaldehyde (mPEG20,000-ALD) for the preparation of PEGylated nanoliposomal cisplatin. Nanocarriers such as liposomes are developed for a wide range of drug delivery systems. PEG with high molecular weight (Mw) is used to coat the liposomes. In this study, simulated Fourier transform infrared (FTIR) spectra of mPEG-ALD were obtained using density functional theory (DFT) calculations and then compared with actual FTIR spectrum of mPEG20,000-ALD (Mw = 20 kDa). We found that the intensity of C = O stretching vibration at 1,700 cm-1 related to the carbonyl functional group of mPEG20,000-ALD was very weak. The results of DFT... 

    Natural compounds for skin tissue engineering by electrospinning of nylon-Beta vulgaris

    , Article ASAIO Journal ; Volume 64, Issue 2 , 2018 , Pages 261-269 ; 10582916 (ISSN) Ranjbarvan, P ; Mahmoudifard, M ; Kehtari, M ; Babaie, A ; Hamedi, S ; Mirzaei, S ; Soleimani, M ; Hosseinzadeh, S ; Sharif University of Technology
    Lippincott Williams and Wilkins  2018
    Abstract
    Natural compounds containing polysaccharide ingredients have been employed as candidates for treatment of skin tissue. Herein, for the first time, electrospinning setup was proposed to fabricate an efficient composite nanofibrous structure of Beta vulgaris (obtained from Beet [Chenopodiaceae or Amaranthaceae]) belonged to polysaccharides and an elastic polymer named nylon 66 for skin tissue engineering. Both prepared scaffolds including noncomposite and composite types were studied by Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical assay, and contact angle. Scanning electron microscope examinations have approved the uniform and homogeneous... 

    Synthesis and application of diethanolamine-functionalized polystyrene as a new sorbent for the removal of p-toluenesulfonic acid from aqueous solution

    , Article Journal of Industrial and Engineering Chemistry ; Volume 30 , October , 2015 , Pages 281-288 ; 1226086X (ISSN) Davarpanah, M ; Ahmadpour, A ; Rohani Bastami, T ; Dabir, H ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2015
    Abstract
    Polystyrene resin was functionalized by diethanolamine for the efficient removal of p-toluenesulfonic acid (p-TSA) from aqueous solution. Functionalized adsorbent (DEA-PS) was characterized by elemental analysis, Fourier transform infrared spectroscopy, point of zero charge measurement and field-emission scanning electron microscopy. According to the results, maximum removal of p-TSA was observed at the pH range of 2.5-5. The adsorption kinetics of p-TSA onto DEA-PS was represented by pseudo-first-order model and the equilibrium data followed Langmuir model well. The adsorption process was endothermic and spontaneous, along with the positive change of entropy. The regeneration of DEA-PS was... 

    Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating

    , Article Journal of Industrial and Engineering Chemistry ; Volume 83 , 2020 , Pages 153-163 Rahmani, P ; Shojaei, A ; Pirhady Tavandashti, N ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    In the present study, thermally oxidized nanodiamond (OND) was first modified non-covalently with dodecylamine (DDA) as corrosion inhibitor. In this respect, reactive primary amine of DDA molecule with high isoelectric point (IEP) could interact easily with negative charge carboxylic acid groups of OND. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) proved that OND nanoparticle was successfully functionalized by DDA up to approximately 5 wt% grafting contnet. Both OND and dodecylamine modified OND (DND) were loaded in epoxy (EP)/polyamine hardener matrix at the same concentration of 1 wt% and applied on mild steel substrate. Morphology of EP-DND and... 

    Antibiotic-loaded chitosan–Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies

    , Article Journal of Materials Science: Materials in Medicine ; Volume 26, Issue 12 , December , 2015 ; 09574530 (ISSN) Ordikhani, F ; Dehghani, M ; Simchi, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: In this study, chitosan–Laponite nanocomposite coatings with bone regenerative potential and controlled drug-release capacity are prepared by electrophoretic deposition technique. The controlled release of a glycopeptide drug, i.e. vancomycin, is attained by the intercalation of the polymer and drug macromolecules into silicate galleries. Fourier-transform infrared spectrometry reveals electrostatic interactions between the charged structure of clay and the amine and hydroxyl groups of chitosan and vancomycin, leading to a complex positively-charged system with high electrophoretic mobility. By applying electric field the charged particles are deposited on the surface of titanium... 

    Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors

    , Article Bioactive Materials ; Volume 11 , 2022 , Pages 107-117 ; 2452199X (ISSN) Khodaei, A ; Jahanmard, F ; Madaah Hosseini, H. R ; Bagheri, R ; Dabbagh, A ; Weinans, H ; Amin Yavari, S ; Sharif University of Technology
    KeAi Communications Co  2022
    Abstract
    Systemic chemotherapy has lost its position to treat cancer over the past years mainly due to drug resistance, side effects, and limited survival ratio. Among a plethora of local drug delivery systems to solve this issue, the combinatorial strategy of chemo-hyperthermia has recently received attention. Herein we developed a magneto-thermal nanocarrier consisted of superparamagnetic iron oxide nanoparticles (SPIONs) coated by a blend formulation of a three-block copolymer Pluronic F127 and F68 on the oleic acid (OA) in which Curcumin as a natural and chemical anti-cancer agent was loaded. The subsequent nanocarrier SPION@OA-F127/F68-Cur was designed with a controlled gelation temperature of... 

    Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol

    , Article Polymer International ; Volume 66, Issue 6 , 2017 , Pages 809-819 ; 09598103 (ISSN) Esmaeili, M ; Pircheraghi, G ; Bagheri, R ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Nowadays, environmental hazards caused by plastic wastes are a major concern in academia and industry. Utilization of biodegradable polymers derived from renewable sources for replacing common petroleum-based plastics is a potential solution for reducing the problem. In this regard, starch has become one of the most promising alternatives to non-biodegradable polymers for depleting plastic waste thanks to its low expense, abundance, renewability and biodegradability. However, the main drawbacks of starch are its poor processability, weak mechanical properties and severe hydrophilicity. In this work, thermoplastic starch (TPS) samples have been prepared using glycerol and sorbitol as... 

    Effect of exfoliated molybdenum disulfide oxide on friction and wear properties of ultra high molecular weight polyethylene

    , Article Polymers for Advanced Technologies ; Volume 29, Issue 12 , 2018 , Pages 3085-3096 ; 10427147 (ISSN) Amini, M ; Ramazani S. A., A ; Afkhami Varjouy, A ; Faghihi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    The aim of this work is to investigate the effect of molybdenum disulfide on tribological properties of Ultra-high-molecular-weight polyethylene (UHMWPE). UHMWPE/MoS2 nano-composites were prepared using in-situ polymerization and Ziegler-Natta catalytic system. Studies showed that, in order to obtain the optimum tribological properties, interlayer distance between nanosheets should be as high as possible. Therefore, the nanosheets were subjected to oxidation using the required oxidants followed by thermal shock and ultrasound. Fourier-transform infrared spectroscopy (FTIR) analysis was used to determine the formation of functional groups which indicate the formation of S═O bond in the... 

    Evaluation of UiO-66 metal organic framework as an effective sorbent for curcumin's overdose

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 4 , 2018 ; 02682605 (ISSN) Molavi, H ; Zamani, M ; Aghajanzadeh, M ; Kheiri Manjili, H ; Danafar, H ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Metal organic frameworks (MOFs) UiO-66 (UiO stands for University of Oslo) and NH2-UiO-66 were prepared and characterized as sorbent (antidotal agents) for curcumin (CUR) adsorption. The structure of products were characterized by X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and N2 adsorption–desorption measurements. FESEM showed NH2-UiO-66 displayed symmetrical crystals with triangular base pyramid morphology, with the particle size around 100 nm and uniform size distribution. Adsorption capacities of CUR/MOFs with different mass ratios... 

    Suzuki–Miyaura coupling reaction in water in the presence of robust palladium immobilized on modified magnetic Fe3O4 nanoparticles as a recoverable catalyst

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 2 , 2018 ; 02682605 (ISSN) Dadras, A ; Naimi Jamal, M. R ; Moghaddam, F. M ; Ayati, S. E ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Aryl halides and especially inactive aryl chlorides were coupled to benzenoid aromatic rings in a Suzuki–Miyaura coupling reaction in the absence of organic solvents and toxic phosphine ligands. The reaction was catalysed by a recoverable magnetic nanocatalyst, Pd@Fe3O4, in aqueous media. This method is green, and the catalyst is easily removed from the reaction media using an external magnetic field and can be re-used at least 10 times without any considerable loss in its activity. The catalyst was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, inductively coupled plasma spectroscopy, Fourier transform infrared spectroscopy, CHN analysis,... 

    Vanadium supported on spinel cobalt ferrite nanoparticles as an efficient and magnetically recoverable catalyst for oxidative degradation of methylene blue

    , Article Applied Organometallic Chemistry ; Volume 33, Issue 10 , 2019 ; 02682605 (ISSN) Salami, R ; Amini, M ; Bagherzadeh, M ; Hosseini, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    Vanadium supported on spinel cobalt ferrite nanoparticles was synthesized and characterized using Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis and transmission electron microscopy. For the first time, the prepared material was used for the catalytic degradation of methylene blue as an organic dye in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a co-reagent at room temperature. The dependency of removal percentage on various parameters such as amount of catalyst, pH, reaction time and temperature and the effect of radical scavenging agents were studied. Finally, recoverability and reusability of the vanadium supported on...