Loading...
Search for: fuels
0.01 seconds
Total 780 records

    Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell

    , Article Biotechnology Letters ; Volume 35, Issue 2 , 2013 , Pages 197-203 ; 01415492 (ISSN) Marashi, S. K. F ; Kariminia, H. R ; Savizi, I. S. P ; Sharif University of Technology
    2013
    Abstract
    Wastewater of purified terephthalic acid (PTA) from a petrochemical plant was examined in a membrane-less single chamber microbial fuel cell for the first time. Time course of voltage during the cell operation cycle had two steady phases, which refers to the fact that metabolism of microorganisms was shifted from highly to less biodegradable carbon sources. The produced power density was 31.8 mW m-2 (normalized per cathode area) and the calculated coulombic efficiency was 2.05 % for a COD removal of 74 % during 21 days. The total removal rate of different pollutants in the PTA wastewater was observed in the following order: (acetic acid) > (benzoic acid) > (phthalic acid) > (terephthalic... 

    Modelling of fischer-tropsch synthesis in a fluidized bed reactor

    , Article Advanced Materials Research ; Volume 586 , 2012 , Pages 274-281 ; 10226680 (ISSN) ; 9783037855232 (ISBN) Kazemeini, M ; Maleki, R ; Fattahi, M
    2012
    Abstract
    The FT reaction involves the conversion of syngas which is derived from natural gas or coal to different kinds of products according to the operating conditions and the type of the catalyst. In other words, it is a practical way to convert solid fuel (coal) and natural gas to various hydrocarbons (C1-C60) and oxygenates such as alkanes, alkenes etc. The main products of the reaction are naphtha and gasoline. This paper deals with developing a proper product distribution model for FT process using the appropriate kinetic model, optimizing the respective rate constants while applying them in product distribution equations. The results revealed only 8.09% deviations from the olefin experimental... 

    Design and manufacturing of a constant volume test combustion chamber for jet and flame visualization of CNG direct injection

    , Article Applied Mechanics and Materials ; Volume 217-219 , 2012 , Pages 2539-2545 ; 16609336 (ISSN) ; 9783037855027 (ISBN) Hajialimohammadi, A ; Ahmadisoleymani, S. S ; Abdullah, A ; Asgari, O ; Rezai, F
    2012
    Abstract
    Constant volume transparent test combustion chambers are extensively used for investigating injection and fuel burning properties of various combustion engines. Their configuration depends on the engine type and the research purpose. Material of components, shape and dimensions of the chamber and its parts, ease of use, accessibility, sealing and safety of the assembly are the parameters needed to be considered in designing the test cell. This paper explains, structural design of a test combustion chamber and its optical windows using finite element analysis of ANSYS 12.0 software for bearing high pressure variations and thermal shocks of combustion. It was designed for conducting CNG direct... 

    Neutronic simulation of a pebble bed reactor considering its double heterogeneous nature

    , Article Nuclear Engineering and Design ; Volume 253 , 2012 , Pages 277-284 ; 00295493 (ISSN) Abedi, A ; Vosoughi, N ; Sharif University of Technology
    2012
    Abstract
    In pebble bed reactors, the core is filled with thousands of graphite and fuel pebbles. Fuel pebbles in these reactors consist of TRISO particles, which are embedded in a graphite matrix stochastically. The reactor core is also stochastically filled with pebbles. These two stochastic geometries comprise the so-called double heterogeneous nature of this type of reactor. In this paper, a pebble bed reactor, the HTR-10, is used to demonstrate a treatment of this double heterogeneity using the MCNP5 Monte Carlo code and MATLAB programming. In this technique, TRISO particles are modeled in a pebble using the expanded FILL and LATTICE features of MCNP5. MATLAB is used to generate random numbers... 

    Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend

    , Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the... 

    Sensitivity analysis of gas turbine fuel consumption with respect to turbine stage efficiency

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 1 , 2012 , Pages 419-423 ; 9780791845172 (ISBN) Zeinalpour, M ; Mazaheri, K ; Irannejad, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the effect of turbine stage efficiency on fuel consumption of both gas turbines and aerial engines is assessed quantitatively. At the beginning of the gas generator optimization to decrease the fuel consumption, it is necessary to analyze the sensitivity of fuel consumption to its main components efficiencies. This will guide us which component is more important to be optimized. Here a zero-dimensional analysis has been done to determine the effect of turbine stage efficiency on the fuel consumption. Results of this analysis are evaluated in the context of thermodynamic cycle of a gas turbine generator and an aerial engine. As an example, it is shown that if the efficiency of... 

    Numerical simulation of NOx pollutant formation in a natural gas fired power generation boiler, by using burner's parameters

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 6, Issue PARTS A AND B , 2012 , Pages 1159-1163 ; 9780791845226 (ISBN) Mehr, S. M. N ; Afshin, H ; Sharif University of Technology
    2012
    Abstract
    The major source of energy is fossil fuels, known as hydrocarbon containing C and H as the main elements. The heat generated from combustion of these fuels is used in power generation cycles to generate electricity. Main products of a hydrocarbon combustion reaction are water and carbon dioxide, but due to some reasons such as excessive temperature and inappropriate air-fuel mixing, always some pollutants are formed. One of the major concerns of recent years are NOx pollutants, which is mostly generated in the high temperature combustions. According to the geographical and economic issues, most countries are using coal as fuel and many researches have been conducted about pollutant formation... 

    Fundamental study of spray and partially premixed combustion of methane/air mixture

    , Article ASME 2012 Internal Combustion Engine Division Fall Technical Conference, ICEF 2012 ; 2012 , Pages 417-426 ; 9780791855096 (ISBN) Askari, O ; Metghalchi, H ; Moghaddas, A ; Hannani, S. K ; Ebrahimi, R ; Sharif University of Technology
    2012
    Abstract
    This study presents fundamentals of spray and partially premixed combustion characteristics of directly injected methane inside a constant volume combustion chamber (CVCC). The constant volume vessel is a cylinder with inside diameter of 135 mm and inside height of 135 mm. Two end of the vessel are equipped with optical windows. A high speed complementary metal oxide semiconductor (CMOS) camera capable of capturing pictures up to 40, 000 frames per second is used to observe flow conditions inside the chamber. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a compressed natural gas (CNG) direct... 

    Neutronic analysis of HPLWR fuel assembly cluster

    , Article Annals of Nuclear Energy ; Volume 50 , December , 2012 , Pages 38-43 ; 03064549 (ISSN) Tashakor, S ; Salehi, A. A ; Jahanfarnia, G ; Abbaspour Tehrani Fard, A ; Sharif University of Technology
    2012
    Abstract
    In the present study the neutronic analysis of fuel assembly cluster of the HPLWR is discussed. Neutronic calculations are performed using WIMS-D4 and CITATION codes. Thermal-hydraulic code containing the properties and specifications of the fuel assembly of HPLWR is utilized. The calculated axial power in each selected control volume is used in the thermal-hydraulic code to get the properties of the fluid and fuel needed for further neutronic analysis. The process of coupling continues until convergence is achieved. Finally, the obtained neutronic results including axial power distribution, neutron flux, and power peaking factors are discussed in the present article  

    Startup of "cANDLE" burnup in a Gas-cooled Fast Reactor using Monte Carlo method

    , Article Annals of Nuclear Energy ; Volume 50 , December , 2012 , Pages 44-49 ; 03064549 (ISSN) Kheradmand Saadi, M ; Abbaspour, A ; Pazirandeh, A ; Sharif University of Technology
    2012
    Abstract
    During the past decade, the CANDLE burnup strategy has been proposed as an innovative fuel cycle and reactor design for complete utilization of uranium resources. In this strategy the shapes of neutron flux, nuclide densities and power density distribution remain constant but the burning region moves in axial direction. The feasibility of this strategy has been demonstrated widely by using the diffusion technique in conjunction with nuclide transmutation equations. On the other hand since the Monte Carlo method provides the exact solution to the neutron transport, the Monte Carlo technique is becoming more widely used in routine burnup calculations. The main objective of this work is startup... 

    Dynamic model identification and control of small turbojet engines using frequency response analysis

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 553-558 ; 9780955529382 (ISBN) Banazadeh, A ; Abdollahi Gol, H ; Ramazani, H ; Sharif University of Technology
    2012
    Abstract
    System Identification is a key technology for the development and integration of modern engineering systems including gas turbines. These systems are highly parametric with complex dynamics and nonlinearities. Small turbojet engines are special class of gas turbines that are suitable for scientific purposes and researches in the area of stability, performance, simulation and fuel control design. The motivation behind the presented study is to improve the speed, quality and cost of engine testing and to gain insight into alternatives to traditional identification methods for gas turbines. It discusses the identification of small turbojet engine dynamics by validating the thermodynamic model... 

    Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings

    , Article Journal of Fuel Cell Science and Technology ; Volume 9, Issue 5 , 2012 ; 1550624X (ISSN) Ashari, G. R ; Ehyaei, M. A ; Mozafari, A ; Atabi, F ; Hajidavalloo, E ; Shalbaf, S ; Sharif University of Technology
    ASME  2012
    Abstract
    In this paper, a Polymer Electrolyte Membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger, and water heater has been considered. A PEM fuel cell system is designed to meet the electrical, domestic hot water, heating, and cooling loads of a residential building located in Tehran. Operating conditions of the system with consideration of the electricity cost has been studied. The cost includes social cost of the environmental pollutants (e.g. CO 2, CO and NO). The results show that the maximum energy needs of the building can be met by 12 fuel cell stacks with nominal capacity of 8.5 kW. Annual average electricity cost of thissystem is equal to 0.39 US$/kWh and... 

    Dye-sensitized solar cells based on a single layer deposition of TiO 2 from a new formulation paste and their photovoltaic performance

    , Article Solar Energy ; Volume 86, Issue 9 , 2012 , Pages 2654-2664 ; 0038092X (ISSN) Mohammadi, M. R ; Louca, R. R. M ; Fray, D. J ; Welland, M. E ; Sharif University of Technology
    Abstract
    A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2... 

    Rapid synthesis of hydroxyapatite nanopowders by a microwave-assisted combustion method

    , Article Journal of Ceramic Processing Research ; Volume 13, Issue 3 , Jan , 2012 , Pages 221-225 ; 12299162 (ISSN) Bovand, N ; Rasouli, S ; Mohammadi, M. R ; Bovand, D ; Sharif University of Technology
    2012
    Abstract
    Nano bioactive hydroxyapatite (Ca 10(PO 4) 6(OH) 2, HAp) ceramic powders have been synthesized by a microwave-assisted combustion method. The powders were synthesized using calcium nitrate tetrahydrate (as the source of calcium) and sodium phosphate dibasic anhydrous (as the source of phosphate ions). Glycine, citric acid and urea were used as fuesl. The influence of the fuel type on the structure and morphology of the samples was studied. Results by X-ray diffraction and Fourier-transform infrared spectroscopy showed the formation of hydroxyapatite as a major phase for all the samples. Using the Scherrer formula, the average crystallite size was found to be in the range of 10 to 28 nm.... 

    Simultanous emergency demand response programming and unit commitment programming in comparison with interruptible load contracts

    , Article IET Generation, Transmission and Distribution ; Volume 6, Issue 7 , 2012 , Pages 605-611 ; 17518687 (ISSN) Sahebi, M. M ; Duki, E. A ; Kia, M ; Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    Different reasons such as power system restructuring, electricity price variation in some hours of a day and growth in the fuel price, have led to more attention to demand response (DR) programmes for consumers. Two important issues in DR programmes are emergency demand response programming (EDRP) and Interruptible/Curtail able (I/C) programme that is utilised as interruptible load contracts (ILC). The EDDR is utilised to decrease the consumption in peak load or critical hours of the day. This occurs by means of customer's behaviour in response to the incentives. However, the curtailment of voluntarily loads in the critical hours considering the consumer requirements is an action that can be... 

    Optimized fuzzy control strategy for a spa hybrid truck

    , Article International Journal of Automotive Technology ; Volume 13, Issue 5 , August , 2012 , Pages 817-824 ; 12299138 (ISSN) Taghavipour, A ; Foumani, M. S ; Sharif University of Technology
    2012
    Abstract
    In this paper, an optimized control strategy is proposed for a split parallel hydraulic hybrid truck. The model of the vehicle was simulated in Simulink. According to a global optimization technique, a fuzzy control strategy is developed for the vehicle. This strategy shows flexibility for different drive cycles and a desirable fuel consumption reduction, especially for a low speed drive cycle, which is extracted according to an urban utility vehicle mission  

    NO x formation in H 2-CH 4 blended flame under MILD conditions

    , Article Combustion Science and Technology ; Volume 184, Issue 7-8 , Aug , 2012 , Pages 995-1010 ; 00102202 (ISSN) Mardani, A ; Tabejamaat, S ; Sharif University of Technology
    2012
    Abstract
    In this article, NO production mechanisms for CH 4-H 2 combustion under MILD (moderate or intense low-oxygen dilution) conditions are studied using CDF and also zero-dimensional well stirred reactor (WSR) analysis. A H 2/CH 4 jet into a heated and diluted coflow is modeled in CFD analysis. The RANS equations with modified k equations are solved in an axisymmetric 2D computational domain. The GRI2.11 full mechanism is considered to represent the chemical reactions. The effects of oxidizer oxygen concentration, fuel hydrogen content, and fuel jet Reynolds number are studied on NO formation reactions. Results show that the measurements are predicted with an acceptable accuracy. The NNH and N 2O... 

    Thermodynamic model for prediction of performance and emission characteristics of SI engine fuelled by gasoline and natural gas with experimental verification

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 7 , July , 2012 , Pages 2213-2225 ; 1738494X (ISSN) Mehrnoosh, D ; Asghar, H. A ; Asghar, M. A ; Sharif University of Technology
    2012
    Abstract
    In this study, a thermodynamic cycle simulation of a conventional four-stroke SI engine has been carried out to predict the engine performance and emissions. The first law of thermodynamics has been applied to determine in-cylinder temperature and pressure as a function of crank angle. The Newton-Raphson method was used for the numerical solution of the equations. The non-differential form of equations resulted in the simplicity and ease of the solution to predict the engine performance. Two-zone model for the combustion process simulation has been used and the mass burning rate was predicted by simulating spherical propagation of the flame front. Also, temperature dependence of specific... 

    Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 3 , 2012 , Pages 473-478 ; 17351472 (ISSN) Nasirahmadi, S ; Safekordi, A. A ; Sharif University of Technology
    2012
    Abstract
    While energy consumption is increasing worldwide due to population growth, the fossil fuels are unstable and exhaustible resources for establishing sustainable life. Using biodegradable compounds present in the wastewater produced in industrial process as a renewable source is an enchanting approach followed by scientists for maintaining a sustainable energy production to vanquish this problem for ulterior generations. In this research, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with humic acid as anodic electron mediator and a cathode compartment including combinational electron acceptor. Escherichia coli was able to use the... 

    Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode

    , Article Environmental Science and Technology ; Volume 46, Issue 12 , 2012 , Pages 6584-6593 ; 0013936X (ISSN) Savizi, I. S. P ; Kariminia, H. R ; Bakhshian, S ; Sharif University of Technology
    2012
    Abstract
    Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode...