Loading...
Search for: fuels
0.011 seconds
Total 780 records

    Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid

    , Article IEEE Transactions on Smart Grid ; Volume 3, Issue 4 , 2012 , Pages 1903-1910 ; 19493053 (ISSN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a hierarchical active power management strategy for a medium voltage (MV) islanded microgrid including a multihybrid power conversion system (MHPCS). To guarantee excellent power management, a modular power conversion system is realized by parallel connection of small MHPCS units. The hybrid system includes fuel cells (FC) as main and supercapacitors (SC) as complementary power sources. The SC energy storage compensates the slow transient response of the FC stack and supports the FC to meet the grid power demand. The proposed control strategy of the MHPCS comprises three control loops; dc-link voltage controller, power management controller, and load current sharing... 

    Electricity generation from petrochemical wastewater using a membrane-less single chamber microbial fuel cell

    , Article 2012 2nd Iranian Conference on Renewable Energy and Distributed Generation, ICREDG 2012 ; 2012 , Pages 23-27 ; 9781467306652 (ISBN) Marashi, S. K. F ; Kariminia, H. R ; Sharif University of Technology
    2012
    Abstract
    Microbial fuel cells (MFCs) represent a new method for simultaneous wastewater treatment and biological electricity generation. In this study, petrochemical wastewater with 8000 mg/l of chemical oxygen demand was examined in a membrane-less single chamber MFC. Effects of wastewater concentration as substrate for microbial oxidation, and anode material (stainless steel or carbon brush) were investigated as designing parameters  

    A parametric study using two design methodologies for pressure jet and swirl injectors

    , Article IEEE Aerospace Conference Proceedings ; 2012 ; 1095323X (ISSN) ; 9781457705564 (ISBN) Mazaheri, K ; Morad, M. R ; Shakeri, A. R ; Sharif University of Technology
    2012
    Abstract
    One of the most important subsystems in the air-breathing engines is the atomizers, which break the fuel into many droplets. It is well known that atomization quality has a significant influence on combustion characteristics such as stability limits, efficiency, and pollutant emission. Both jet and swirl injectors are applicable in gas turbine engines. The latter have been widely used for combustion chambers and the former are usually employed for fuel injection in the afterburner part. Since experimental and numerical study of atomizers could be complex and costly, a design methodology of atomizers based on empirical relations is still very advantageous and effective in reducing... 

    Power management strategy for a multi-hybrid fuel cell/energy storage power generation systems

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 354-359 ; 9781467301114 (ISBN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper depicts a new configuration for modular hybrid power conversion systems, namely, multi-hybrid generation system (MHGS), and parallel connection at the output, such that the converter of each unit shares the load current equally. This is a significant step towards realizing a modular power conversion system architecture, where smaller units can be connected in any series/parallel grouping to realize any required unit specifications. The supercapacitor (SC) as a complementary source is used to compensate for the slow transient response of the fuel cell (FC) as a main power source. It assists the FC to meet the grid power demand in order to achieve a better performance and dynamic... 

    Stochastic modeling of the energy supply system with uncertain fuel price - A case of emerging technologies for distributed power generation

    , Article Applied Energy ; Volume 93 , 2012 , Pages 668-674 ; 03062619 (ISSN) Mirkhani, S ; Saboohi, Y ; Sharif University of Technology
    2012
    Abstract
    A deterministic energy supply model with bottom-up structure has limited capability in handling the uncertainties. To enhance the applicability of such a model in an uncertain environment two main issues have been investigated in the present paper. First, a binomial lattice is generated based on the stochastic nature of the source of uncertainty. Second, an energy system model (ESM) has been reformulated as a multistage stochastic problem. The result of the application of the modified energy model encompasses all uncertain outcomes together and enables optimal timing of capacity expansion. The performance of the model has been demonstrated with the help of a case study. The case study has... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent... 

    Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts

    , Article Fuel Processing Technology ; Volume 97 , 2012 , Pages 45-51 ; 03783820 (ISSN) Molaei Dehkordi, A ; Ghasemi, M ; Sharif University of Technology
    2012
    Abstract
    Heterogeneous solid catalysts comprising CaO and ZrO 2 mixed oxides with various Ca-to-Zr molar ratios were synthesized by means of coprecipitation method. These synthesized mixed oxide catalysts were used for the transesterification of waste cooking oil (WCO) as feedstock with methanol to produce biodiesel fuel (BDF) at 65 °C and 1 atm. The influences of Ca-to-Zr molar ratio, catalyst loading, methanol-to-oil molar ratio, and the reaction time on the BDF yield were carefully investigated. In addition, the stability of prepared solid catalysts was studied. These catalysts were characterized by using techniques of X-ray diffraction, X-ray florescence, X-ray photoelectron spectroscopy, surface... 

    Pre-treatment and oxidation behavior of sol-gel Co coating on 430 steel in 750°C air with thermal cycling

    , Article Surface and Coatings Technology ; Volume 206, Issue 16 , 2012 , Pages 3495-3500 ; 02578972 (ISSN) Dayaghi, A. M ; Askari, M ; Gannon, P ; Sharif University of Technology
    2012
    Abstract
    Research and development efforts continue to improve oxidation resistance and electrical conductivity of solid oxide fuel cell (SOFC) interconnects. This research evaluates the performance of a ferritic stainless steel (AISI 430 - a candidate SOFC interconnect material) with and without a Co coating (via sol-gel dip coating technique) with various pre-treatments, during cyclic oxidation exposures up to 750°C in laboratory air. A pre-treatment exposure of Co coated samples to a 750°C reducing atmosphere (prior to oxidation exposures) led to the formation of an effective Co-based spinel oxide coating that lowers oxidation rates by more than 40 times, and substantially lowers area specific... 

    Piloted ignition of solid fuels in turbulent back-step flows

    , Article Aerospace Science and Technology ; Volume 18, Issue 1 , 2012 , Pages 8-14 ; 12709638 (ISSN) Tahsini, A. M ; Sharif University of Technology
    2012
    Abstract
    Piloted ignition of solid fuels in dump combustor geometry subject to an igniter hot jet plume is numerically investigated. The objective of this work is to gain insight into the fuel ignition and subsequent flame spreading in this turbulent flow configuration. Conjugate heat transfer between gas and solid phases is considered to study the solid fuel heating and evaporation process; Solid phase energy equation is simultaneously solved coupled with flow governing equations. Finite rate one step second order chemistry is used in simulations. The gas phase equations along with the Spalart-Allmaras turbulence model are solved with a finite volume approach in which the AUSM + scheme is used to... 

    A reduced order model for liquid sloshing in tanks with flexible baffles using boundary element method

    , Article International Journal for Numerical Methods in Engineering ; Volume 89, Issue 13 , 2012 , Pages 1652-1664 ; 00295981 (ISSN) Noorian, M. A ; Firouz Abadi, R. D ; Haddadpour, H ; Sharif University of Technology
    2012
    Abstract
    In order to study the interaction of sloshing and structural vibrations of baffled tanks, a reduced order model based on modal analysis of structure model and boundary element method for fluids motion is developed. For this purpose, the governing equations of elastic structure and incompressible flow are used to derive simple models to simulate both fields. Using the modal analysis technique, the structural motions are applied to the fluid model and on the other hand by using boundary element method, the fluid loads are applied to the structural model. Based on this formulation, a code is developed which is applicable to an arbitrary elastic tank with arbitrary arrangement of baffles. The... 

    Mathematical modeling of a slurry reactor for DME direct synthesis from syngas

    , Article Journal of Natural Gas Chemistry ; Volume 21, Issue 2 , March , 2012 , Pages 148-157 ; 10039953 (ISSN) Papari, S ; Kazemeini, M ; Fattahi, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas. This large-scale reactor is modeled using mass and energy balances, catalyst sedimentation and single-bubble as well as two-bubbles class flow hydrodynamics. A comparison between the two hydrodynamic models through pilot plant experimental data from the literature shows that heterogeneous two-bubbles flow model is in better agreement with the experimental data than homogeneous single-bubble gas flow model. Also, by investigating the heterogeneous gas flow and axial dispersion model for small bubbles as well as the... 

    Development of a zero emission integrated system for co-production of electricity and methanol through renewable hydrogen and CO 2 capture

    , Article International Journal of Greenhouse Gas Control ; Volume 7 , 2012 , Pages 145-152 ; 17505836 (ISSN) Soltanieh, M ; Azar, K. M ; Saber, M ; Sharif University of Technology
    Abstract
    In order to decrease CO 2 emission into the atmosphere and develop renewable energy sources for carbon capture, an integrated system is considered for co-production of electricity and methanol. In this research, methanol synthesis unit through captured CO 2 from fossil fuel power plant and produced H 2 from water electrolysis unit by wind renewable energy is developed. An oxy-fuel combustion carbon capture method is considered in large scale Matiant power plant based on utilization of oxygen from water electrolysis unit. Technical and economical analysis of the proposed system shows that when the price of natural gas is 7.8US$/GJ, the total CO 2 avoided cost is 93US$/(tonne of CO 2) and... 

    The competitiveness of wind power compared to existing methods of electricity generation in Iran

    , Article Energy Policy ; Volume 42 , 2012 , Pages 651-656 ; 03014215 (ISSN) Moslem Mousavi, S ; Bagheri Ghanbarabadi, M ; Bagheri Moghadam, N ; Sharif University of Technology
    2012
    Abstract
    In Iran, there are more than 15,000. MW of wind power potential, but only about 90. MW have been installed since 2009. Because fuel costs are the main part of fuel-consumed power generation costs and fossil resource costs are highly subsidized in Iran, renewable energies such as wind power have yet to be fully developed. This analysis sets out to evaluate the total generating costs of wind power and conventional power plants in Iran. A levelized cost approach was conducted that included investment costs, O&M costs, fuel costs and external costs of emissions for each type of technology. Comparison of cost assessments of power generation show that by taking into account global fuel prices and... 

    Synthesis and characterization of Ce-TZP/Al 2O 3 nanocomposites prepared via aqueous combustion

    , Article Journal of Alloys and Compounds ; Volume 514 , February , 2012 , Pages 150-156 ; 09258388 (ISSN) Asadirad, M ; Yoozbashizadeh, H ; Sharif University of Technology
    2012
    Abstract
    Nanocomposites of Ce-TZP/Al 2O 3 were synthesized by aqueous combustion, and urea, ammonium acetate and glycine were used as mixtures of fuels with the corresponding metal nitrates. Thermodynamic modeling was conducted to anticipate the effect of the alumina content on the exothermicity of the combustion procedure. The thermodynamic properties of the combustion reaction indicated that as the alumina content increased, the amount of gases produced during the reaction increased with a decrease in the adiabatic temperature. Furthermore, to reduce the particle size of the powders, a series of combustion reactions were performed to optimize the fuel composition and alumina content. Ce 0.1Zr 0.9O... 

    Nonlinear vibrations and chaos in floating roofs

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 7, Issue 2 , January , 2012 ; 15551415 (ISSN) Shabani, R ; Tariverdilo, S ; Salarieh, H ; Sharif University of Technology
    2012
    Abstract
    Variational principle is used to derive the nonlinear response of the floating roof of cylindrical liquid storage tanks due to harmonic base excitations. The formulation accounts for nonlinearity due to large deflections of the floating roof. The derived nonlinear governing equation for the sloshing response of the floating roof has a cubic nonlinear stiffness term similar to the well known Duffing equation. It is shown that accounting for large deflections could substantially reduce the wave elevation for near resonance harmonic excitations. Evaluating the response of the nonlinear model for increasing amplitudes of near resonance harmonic excitations gives rise to the appearance of sub and... 

    Hydrogen generation optimization in a hybrid photovoltaic-electrolyzer using intelligent techniques

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2012 Collocated with the ASME 2012 6th International Conference on Energy Sustainability, San Diego, CA, USA, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 19-24 ; 9780791844823 (ISBN) Maroufmashat, A ; Seyyedyn, F ; Roshandel, R ; Bouroshaki, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    Abstract
    Hydrogen is a flexible energy carrier and storage medium and can be generated by electrolysis of water. In this research, hydrogen generation is maximized by optimizing the optimal sizing and operating condition of an electrolyzer directly connected to a PV module. The method presented here is based on Particle swarm optimization algorithm (PSO). The hydrogen, in this study, was produced using a proton exchange membrane (PEM) electrolyzer. The required power was supplied by a photovoltaic module rated at 80 watt. In order to optimize Hydrogen generation, the cell number of the electrolyser and its activity must be 9 and 3, respectively. As a result, it is possible to closely match the... 

    Development of a VVER-1000 core loading pattern optimization program based on perturbation theory

    , Article Annals of Nuclear Energy ; Volume 39, Issue 1 , 2012 , Pages 35-41 ; 03064549 (ISSN) Hosseini, M ; Vosoughi, N ; Sharif University of Technology
    Abstract
    In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. Two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain the fuel integrity. Because of the numerous possible patterns of fuel assemblies in the reactor core, finding the best configuration is so important and challenging. Different techniques for optimization of fuel loading pattern in the reactor core have been introduced by now. In this study, a software is programmed in C# language to find an... 

    An innovative three dimensional numerical model for bipolar plates to enhance the efficiency of PEM fuel cells

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 351-360 ; 9780791844823 (ISBN) Arbabi, F ; Roshandel, R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    Abstract
    The efficiency of proton exchange membrane (PEM) fuel cell is straightly correlated to the bipolar plate design and fluid channel arrangements. Higher produced energy can be attained by optimal design of type, size, or patterns of the channels. Previous researches showed that the bipolar plate channel design has a considerable effect on reactant distribution uniformity as well as humidity control in PEM fuel cells. This paper concentrates on enhancements in the fuel cell performance by optimization of bipolar plate design and channels configurations. A numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The results gained from... 

    Resolution and quantification of complex mixtures of polycyclic aromatic hydrocarbons in heavy fuel oil sample by means of GC × GC-TOFMS combined to multivariate curve resolution

    , Article Analytical Chemistry ; Volume 83, Issue 24 , 2011 , Pages 9289-9297 ; 00032700 (ISSN) Parastar, H ; Radović, J. R ; Jalali-Heravi, M ; Diez, S ; Bayona, J. M ; Tauler, R ; Sharif University of Technology
    Abstract
    Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) combined to multivariate curve resolution-alternating least-squares (MCR-ALS) is proposed for the resolution and quantification of very complex mixtures of compounds such as polycyclic aromatic hydrocarbons (PAHs) in heavy fuel oil (HFO). Different GC × GC-TOFMS data slices acquired during the analysis of HFO samples and PAH standards were simultaneously analyzed using the MCR-ALS method to resolve the pure component elution profiles in the two chromatographic dimensions as well as their pure mass spectra. Outstandingly, retention time shifts within and between GC × GC runs were not affecting... 

    Performance investigation of a four stroke diesel engine, using water-based ferrofluid as an additive

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 4, Issue PARTS A AND B , November , 2011 , Pages 1339-1343 ; 9780791854907 (ISBN) Daneshvar, F ; Jahani, N ; Shafii, M. B ; ASME ; Sharif University of Technology
    Abstract
    In this experimental study, a four stroke diesel engine was conducted to investigate the effect of adding water-based ferrofluid to diesel fuel on engine performance. To our knowledge, Magnetic nanoparticles had not been used before. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 water-based ferrofluid/Diesel ratios by volume were used as fuel. The ferrofluid used in this study was a handmade water-based ferrofluid prepared by the authors. The results show that adding water-based ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12%, and decreasing the brake specific fuel consumption relatively up to...