Loading...
Search for: glass
0.034 seconds
Total 426 records

    On the Importance of Noncrystalline Phases in Semicrystalline Electrospun Nanofibers

    , Article ACS Applied Polymer Materials ; Volume 3, Issue 12 , 2021 , Pages 6315-6325 ; 26376105 (ISSN) Soleimani, F ; Mazaheri, M ; Pellerin, C ; Bagheri, R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Tailoring the properties of electrospun fibers requires a detailed understanding and control of their microstructure. We investigate the structure/property relationships in fabrics of randomly aligned fibers of polylactide, a prevalent biopolymer, either as-spun or after annealing and solvent-induced crystallization. In-depth characterization by field-emission scanning electron microscope (FESEM), wide-angle X-ray diffraction (WAXD), attenuated total reflection Fourier transform infrared (ATR-FTIR), and modulated temperature differential scanning calorimetry (MT-DSC) reveals that the as-spun fibers comprise crystalline and mesomorphic phases, as well as oriented but mobile amorphous chain... 

    The effects of elevated temperatures on the performance of concrete-filled pultruded GFRP tubular columns

    , Article Thin-Walled Structures ; Volume 169 , 2021 ; 02638231 (ISSN) Tabatabaeian, M ; Khaloo, A ; Azizmohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Usage of concrete-filled pultruded glass fiber-reinforced polymer (GFRP) tubes (CFPGT) as columns can increase the service life of structures. However, marine structures such as oil platforms are always prone to fire because of the low resistance to the elevated temperatures. The purpose of this investigation is to evaluate the effects of concrete core strength (30 and 60 MPa), and exposure temperature (25, 100, 200, 300, and 400 °C) and time (60 and 120 min) on the compressive and bond behavior of CFPGTs. The properties of unexposed and exposed concrete core, pultruded GFRP hollow tubes, and CFPGTs were determined via compressive and disk-split tests. Also, the push-out test was used to... 

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    A Study on Optoelectronic Properties of Copper Zinc Tin Sulfur Selenide: A Promising Thin-Film Material for Next Generation Solar Technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al-Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    Optoelectronic properties of thermally coated tin selenide thin films for photovoltaics

    , Article International Journal of Energy Research ; 2021 ; 0363907X (ISSN) Ali, N ; Sharif, U ; Shahzad, N ; Kalam, A ; Al-Sehemi, A ; Alrobei, H ; Khesro, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this study, 490 nm thin tin selenide thin films were deposited by facile co-evaporation techniques using Sn and Se sources on a clean glass substrate. The thin films were annealed at moderate annealing temperature followed by characterization and analysis. The thin annealed films possess polycrystalline nature and orthorhombic structure with an average grain size of 130 nm. The band gap assessed from absorption spectra for the highly annealed sample was 1.52 eV. The resistivity and sheet resistance were measured with four-probe techniques and the sheet resistance was =1.362 × 104 ohm for the highly annealed film. © 2021 John Wiley & Sons Ltd  

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    A study on optoelectronic properties of copper zinc tin sulfur selenide: A promising thin-film material for next generation solar technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    Optoelectronic properties of thermally coated tin selenide thin films for photovoltaics

    , Article International Journal of Energy Research ; 2021 ; 0363907X (ISSN) Ali, N ; Sharif, U ; Shahzad, N ; Kalam, A ; Al-Sehemi, A ; Alrobei, H ; Khesro, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this study, 490 nm thin tin selenide thin films were deposited by facile co-evaporation techniques using Sn and Se sources on a clean glass substrate. The thin films were annealed at moderate annealing temperature followed by characterization and analysis. The thin annealed films possess polycrystalline nature and orthorhombic structure with an average grain size of 130 nm. The band gap assessed from absorption spectra for the highly annealed sample was 1.52 eV. The resistivity and sheet resistance were measured with four-probe techniques and the sheet resistance was =1.362 × 104 ohm for the highly annealed film. © 2021 John Wiley & Sons Ltd  

    Investigation of the gamma-ray shielding performance of the B2O3-Bi2O3-ZnO-Li2O glasses based on the monte carlo approach

    , Article Radiation Physics and Chemistry ; Volume 189 , 2021 ; 0969806X (ISSN) Asadi, A ; Hosseini, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The purpose of this article is to investigate the shielding performance of the B2O3-Bi2O3-ZnO-Li2O glasses against the gamma-ray. To this end, the attenuation parameters of the gamma-ray inside the B2O3-Bi2O3-ZnO-Li2O glasses were evaluated in the energy range of 200–1500 keV. It was found that the mass attenuation coefficient of the composites increases with increasing the Li2O content. The relative percent deviation between the results of simulation using the MCNPX and XCOM database in most cases was less than 2%. Additionally, the Mean Free Path (MFP) and Half-Value Layer (HVL) parameters were evaluated, and the shielding efficiency of samples was compared with some conventional shielding... 

    Experimental comparison of cyclic behavior of RC columns strengthened with TRC and FRP

    , Article Bulletin of Earthquake Engineering ; Volume 19, Issue 7 , 2021 , Pages 2941-2970 ; 1570761X (ISSN) Azadvar, N ; Zargaran, M ; Rahimzadeh Rofooei, F ; Attari, N. K. A ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Seven half-scale reinforced concrete (RC) columns with supporting beam were experimentally studied under combined axial and lateral cyclic loading. The specimens were categorized in two groups based on reinforcement ratios. Three specimens were strengthened with carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) sheets. Other specimens were strengthened using a high strength mortar reinforced with textile mesh (textile reinforced concrete (TRC)). Strengthening of specimens were carried out using a vertical layer and a horizontal layer of FRP sheet or two vertical and two horizontal layers of textile meshes for TRC specimens. Since the weight of each layer of... 

    The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation

    , Article Journal of Molecular Liquids ; January , 2021 ; 01677322 (ISSN) Golmohammadi, M ; Mohammadi, S ; Mahani, H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    Oil polarity is an important property impacting the efficiency of low salinity waterflooding (LSWF). It directly affects fluid/fluid and rock/fluid interactions, controlling the interfacial properties and forces. However, the current findings in the literature on the effect of concentration of polar components on oil recovery by LSWF are contradictory. Therefore, the main objective of this paper is to investigate how the type of non-polar fractions and the concentration of acidic polar oil constituents change the trapped oil saturation at the pore-scale during LSWF. In this regard, we conducted a series of microfluidics LSWF experiments in both secondary and tertiary modes, using clay-free... 

    Experimental and numerical fatigue life study of cracked AL plates reinforced by glass/epoxy composite patches in different stress ratios

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 6 , 2021 , Pages 894-910 ; 15397734 (ISSN) Hosseini, K ; Safarabadi, M ; Ganjiani, M ; Mohammadi, E ; Hosseini, A ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this study, the fatigue behavior of composite reinforced cracked aluminum 1050 plates is investigated experimentally and numerically. The tests are conducted in four different stress ratios between 0 and 1. At first step, plates with similar cracks and geometries have been prepared. Then the glass/epoxy patches have been attached to the cracked plates using Araldite 2015 adhesive. Fatigue load has been applied to three cases of samples including non-patch, one-side patch and two-side patch, where in all stress ratios the maximum force is considered constant. A three-dimensional finite element analysis is developed in ABAQUS. A good correlation between finite element results and the... 

    Synthesis of SiOC/Al2O3 nano/macro composites through PDC method; investigation of potentials as layers of a packed bed reactor membrane

    , Article Ceramics International ; Volume 46, Issue 11 , 2020 , Pages 19000-19007 Abdollahi, S ; Paryab, A ; Rahmani, S ; Akbari, M ; Sarpoolaky, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Thanks to a wide range of pore sizes by nano/macro composites of SiOC/Al2O3, such composites can serve as different layers of the structure of Packed Bed Reactor Membranes (PBRM). In the present study, the Polymer-Derived Ceramics method (PDC) has been used to synthesize nano/macro structures. Firstly, the effect of toluene as an extra carbon source on structure and microstructure of SiOC glass-ceramics was evaluated, such that, 4% (Vol) toluene was recognized as the proper amount to facilitate the synthesis of β-SiC at 1300 °C proved by XRD, Raman spectroscopy, and HR-TEM. Moreover, the presence of micro/meso-porosities was assessed by BET and TEM, indicating the capability of SiOC to serve... 

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; 2020 Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    Rheological properties and the micromodel investigation of nanosilica gel-reinforced preformed particle gels developed for improved oil recovery

    , Article Journal of Petroleum Science and Engineering ; Volume 192 , 2020 Aqcheli, F ; Salehi, M. B ; Pahlevani, H ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Preformed particle gels (PPGs) in solutions have been widely used to suppress excess water production in mature oil reservoirs and, in turn, to improve the amount of oil recovery in brown oil fields. In this study, PPG solutions were meticulously formulated and synthesized in order to be utilized in harsh environments in terms of pressure, temperature, pH, and salinity from a free radical polymerization process. In this work, nanosilica gel at different weight percentages was added to improve the mechanical and thermal stability properties of the PPG at harsh condition: high pressure, temperature, and strain. Moreover, the effects of nanosilica gel at various concentrations, ranging from 0.0... 

    Gut-on-a-chip: Current progress and future opportunities

    , Article Biomaterials ; Volume 255 , 2020 Ashammakhi, N ; Nasiri, R ; Barros, N. R. D ; Tebon, P ; Thakor, J ; Goudie, M ; Shamloo, A ; Martin, M. G ; Khademhosseni, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to... 

    Mechanical properties of pultruded GFRP profiles under seawater sea sand concrete environment coupled with UV radiation and moisture

    , Article Construction and Building Materials ; Volume 258 , 2020 Bazli, M ; Zhao, X. L ; Jafari, A ; Ashrafi, H ; Bai, Y ; Singh Raman, R. K ; Khezrzadeh, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, the mechanical properties of various glass fibre reinforced polymer (GFRP) pultruded profiles exposed to seawater sea sand concrete (SWSSC) and its combination with UV radiation and water vapour condensation were studied. The effect of different conditions, duration of conditioning, and the profile cross-section configuration on the mechanical properties were investigated. Three-point bending, tension, and compression tests were carried out to obtain the mechanical properties, including flexural, tensile and compressive strengths and tensile elastic modulus. Furthermore, in order to scrutiny the mechanisms and extent of damage, scanning electron microscopy (SEM) was carried... 

    Durability of glass-fibre-reinforced polymer composites under seawater and sea-sand concrete coupled with harsh outdoor environments

    , Article Advances in Structural Engineering ; 2020 Bazli, M ; Zhao, X. L ; Jafari, A ; Ashrafi, H ; Raman, R. K. S ; Bai, Y ; Khezrzadeh, H ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    This article presents an investigation on the durability of different glass-fibre-reinforced polymer composites when subjected to harsh outdoor conditions, including freeze/thaw cycles, ultraviolet radiation and moisture, as well as when used with seawater sea-sand concrete for construction applications. To achieve this, the effects of a number of parameters, including the environment of exposure, exposure time, profile cross-sectional configuration and orientation of fibres, on the mechanical properties of different glass-fibre-reinforced polymer composites were studied. To investigate the degradation of the mechanical properties, three-point bending, compression and tension tests were... 

    In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms

    , Article ACS Sustainable Chemistry and Engineering ; Volume 8, Issue 38 , 2020 , Pages 14340-14352 Ezzati, M ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In the present study, a rational two-step strategy is employed for the green, fast, very simple, and highly controllable synthesis of the bimetallic nickel-cobalt-based metal-organic frameworks (MOFs) on glassy carbon substrates by in situ transformation of nickel-cobalt-layered double hydroxide nanosheet (NiCo-LDHs NSs) intermediates into nickel-cobalt-benzene tricarboxylic acid MOFs (E-NiCo-BTC MOFs). The structural characteristics of the electrode materials in each step were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and transmittance electron microscopy.... 

    Finite element optimization of sample geometry for measuring the torsional shear strength of glass/metal joints

    , Article Ceramics International ; Volume 46, Issue 4 , 2020 , Pages 4857-4863 Fakouri Hasanabadi, M ; Malzbender, J ; Groß Barsnick, S. M ; Abdoli, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Assessment of mechanical properties of glass/metal joints is a challenging process, especially when the application relevant conditions of the joints have to be considered in the test design. In this study, a finite element method (FEM) is implemented to analyze a torsional shear strength test designed for glass-ceramic/steel joints aiming towards solid oxide fuel/electrolysis cells application. Deviations from axial symmetry of the square flanges (ends) of respective hourglass-shaped specimens and also supporting and loading sockets of the test set-up are included in the model to simulate conditions close to reality. Undesirable tensile stress and also shear stress concentration appear at...