Loading...
Search for: glucose
0.006 seconds
Total 136 records

    Enzymatic biosensing by covalent conjugation of enzymes to 3D-networks of graphene nanosheets on arrays of vertically aligned gold nanorods: application to voltammetric glucose sensing

    , Article Microchimica Acta ; Volume 185, Issue 3 , 2018 ; 00263672 (ISSN) Mazaheri, M ; Simchi, A ; Aashuri, H ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    The authors demonstrate efficient direct electron transfer from the enzyme glucose oxidase to vertically aligned gold nanorods with a diameter of ~160 nm and a length of ~2 μm that are covalently linkage to a 3-dimensional network of reduced graphene oxide nanosheets. The assembly can be prepared by a 2-step electrochemical procedure. This hybrid structure holds the enzyme in a favorable position while retaining its functionality that ultimately provides enhanced performance for enzymatic sensing of glucose without utilizing mediators. The nanorod assembly was applied to the voltammetric detection of glucose. Figures of merit include an electrochemical sensitivity of 12 μA·mM−1·cm−2... 

    Study on commercial membranes and sweeping gas membrane distillation for concentrating of glucose syrup

    , Article Journal of Membrane Science and Research ; Volume 6, Issue 1 , 2020 , Pages 47-57 Shirazi, M. M. A ; Kargari, A ; Bastani, D ; Soleimani, M ; Fatehi, L ; Sharif University of Technology
    Amirkabir University of Technology - Membrane Processes Research Laboratory  2020
    Abstract
    In this work, sweeping gas membrane distillation (SGMD) process was used for concentrating of glucose syrup. The main questions in this work include: is SGMD process practical for concentrating of glucose solution prior the fermentation step in bioethanol process?. and are the commercially available hydrophobic membranes sufficient enough to develop the SGMD process in pilot scale for this issue?. To answer these questions, SGMD process was performed using three commercial membranes made of PP, PVDF and PTFE. All membranes characterized using scanning electron and atomic force microscopes for their morphological and topographical features. Important operating parameters including feed... 

    Facile preparation of a highly sensitive non-enzymatic glucose sensor based on the composite of Cu(OH)2 nanotubes arrays and conductive polypyrrole

    , Article Microchemical Journal ; Volume 169 , 2021 ; 0026265X (ISSN) Manafi Yeldaghermani, R ; Shahrokhian, S ; Hafezi Kahnamouei, M ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    A novel amperometric non-enzymatic glucose sensor is designed by the facile preparation method. It is made by electrodeposition of Cu clusters and converting them to Cu(OH)2 nanotubes (Cu(OH)2NTs) arrays along with thin-film electro-polymerized of spindle-shaped polypyrrole (PPy@Cu(OH)2NTs), which have been doped by using sodium Benzene-1,3-disulfonate as an anion dopant. Various electrochemical methods investigate the electrochemical performance of the modified electrode toward glucose detection. Under the optimized conditions, a significant electrochemical response improvement is observed toward the electro-oxidation of glucose on the PPy@Cu(OH)2NTs electrode's surface relative to the... 

    Bimetallic CoZn-MOFs easily derived from CoZn-LDHs, as a suitable platform in fabrication of a non-enzymatic electrochemical sensor for detecting glucose in human fluids

    , Article Sensors and Actuators B: Chemical ; Volume 344 , 2021 ; 09254005 (ISSN) Ataei Kachouei, M ; Shahrokhian, S ; Ezzati, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the present study, an in-situ, two-step, highly controllable, fast, green, and facile strategy for fabricating the bimetallic cobalt-zinc-based metal-organic frameworks (MOFs) is employed for designing a non-enzymatic glucose sensing platform. The structural characterization, as well as the phase investigation of materials in each step, are assessed by X-ray diffraction, energy-dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. Furthermore, the electrocatalytic activity of the CoZn-BTC/GC fabricated electrode toward the electro-oxidation of glucose is examined by various electrochemical techniques,... 

    Delay-Independent regulation of blood glucose for type-1 diabetes mellitus patients via an observer-based predictor feedback approach by considering quantization constraints

    , Article European Journal of Control ; Volume 63 , January , 2021 , Pages 240-252 ; 09473580 (ISSN) Golestani, F ; Tavazoei, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Diabetes, as a widespread chronic disease, is caused by the increase of blood glucose concentration (BGC) due to pancreatic insulin production failure and/or insulin resistance in the body. The artificial pancreas (AP) known as a closed-loop insulin delivery control system consists of a glucose sensor for BGC measurement, a control algorithm for calculation of exogenous insulin delivery rate (IDR), and an insulin infusion pump. The AP provides a closed-loop glucose-insulin regulatory system for type-1 diabetes mellitus (T1DM) patients in order to effectively reduce the high BGC level. In this paper, we aim to design a controller in order to regulate the BGC of T1DM patients at its basal... 

    Nonenzymatic sweat-based glucose sensing by flower-like au nanostructures/graphene oxide

    , Article ACS Applied Nano Materials ; Volume 5, Issue 9 , 2022 , Pages 13361-13372 ; 25740970 (ISSN) Asen, P ; Esfandiar, A ; Kazemi, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The development of a nonenzymatic glucose sensor working in real human body conditions through a noninvasive sampling approach has attracted considerable attention. Hence, this work focuses on the development of a new nonenzymatic glucose sensor based on flower-like Au nanostructures (F-AuNTs) and graphene oxide (GO) as a supporting matrix. The F-AuNTs-GO hybrid was synthesized by simple drop casting of the GO suspension onto the graphite sheet (GS) followed by electrodeposition of F-AuNTs on GO nanosheets at 3 V in a two-electrode system. The electrocatalytic activity of the F-AuNTs-GO/GS sensor toward glucose electrooxidation was initially evaluated in a 0.1 M buffer phosphate solution (pH... 

    Subcutaneous insulin administration by deep reinforcement learning for blood glucose level control of type-2 diabetic patients

    , Article Computers in Biology and Medicine ; Volume 148 , 2022 ; 00104825 (ISSN) Raheb, M. A ; Niazmand, V. R ; Eqra, N ; Vatankhah, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Background: Type-2 diabetes mellitus is characterized by insulin resistance and impaired insulin secretion in the human body. Many endeavors have been made in terms of controlling and reducing blood glucose via the medium of automated controlling tools to increase precision and efficiency and reduce human error. Recently, reinforcement learning algorithms are proved to be powerful in the field of intelligent control, which was the motivation for the current study. Methods: For the first time, a reinforcement algorithm called normalized advantage function (NAF) algorithm has been applied as a model-free reinforcement learning method to regulate the blood glucose level of type-2 diabetic... 

    Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing

    , Article Journal of Molecular Catalysis B: Enzymatic ; Volume 68, Issue 2 , 2011 , Pages 206-210 ; 13811177 (ISSN) Tasviri, M ; Rafiee Pour, H. A ; Ghourchian, H ; Gholami, M. R ; Sharif University of Technology
    Abstract
    A nano-composite material consisting of amine functionalized TiO 2-coated carbon nanotubes was prepared and used for glucose oxidase (GOx) absorption. The GOx bearing nanomaterial was fixed on a glassy carbon electrode to construct a novel biosensor for glucose determination. The direct electrochemistry of immobilized GOx and its electron transfer parameters at the modified glassy carbon electrode were reported. The apparent heterogeneous electron transfer rate constant (ks) of GOx was estimated to be 3.5 s-1, which is higher than those reported previously. Amperometric detection of glucose resulted in a rapid (3 s) and stable response in the linear concentration range from 1.8 to 266 μM.... 

    Modeling of a glucose sensitive composite membrane for closed-loop insulin delivery

    , Article Journal of Membrane Science ; Volume 335, Issue 1-2 , 2009 , Pages 21-31 ; 03767388 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2009
    Abstract
    A theoretical model was developed to describe a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose sensitive composite membrane. The composite membrane consisted of nanoparticles of a weakly acidic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. Time- and position-dependent diffusivity of involved species was considered in the model. Donnan equilibrium was used to find concentrations of buffer ions inside the membrane. The profiles of pH, species concentrations, volume fraction of swollen gel, polymer and water-filled space, as well as solute diffusivity inside the membrane were predicted by the model as a function... 

    Blood Glucose Control for Type 1 Diabetes Patients with Explicit Model Predictive Control (MPC)

    , M.Sc. Thesis Sharif University of Technology Shahzadeh Fazeli, Ali (Author) ; Alasty, Aria (Supervisor) ; Vahidi, Omid (Co-Supervisor)
    Abstract
    Blood glucose regulation in type 1 diabetes patients requires the delivery of the proper amount of insulin from an external source. The literature of Blood Glucose Control signifies the superiority of model-based controllers over the other ones. Regarding its lack of need to complicated on-line calculations and the simplicity of its implementation on a micro-chip, the explicit Model Predictive Controller is preferred over the implicit MPC. Currently proposed explicit MPC controllers have employed relatively simple models representing human glucose-insulin dynamics. In this thesis, an explicit MPC controller is designed using mp-QP based on Sorensen’s 19-state comprehensive model which has... 

    Comparison of solid substrate and submerged fermentation for chitosan production by aspergillus niger

    , Article Scientia Iranica ; Volume 17, Issue 2 C , 2010 , Pages 153-157 ; 10263098 (ISSN) Maghsoodi, V ; Yaghmaei, S ; Sharif University of Technology
    2010
    Abstract
    Production yield of solid-state (SSF) and submerged fermentation (SMF) on chitosan from Aspergillus niger was investigated. A. niger BBRC 20004 was grown on soybean residue and Sabouraud Dextrose Broth medium (2% glucose). Chitosan was extracted from the fungal mycelia using hot alkaline and acid treatment. Soybean residue at a moisture content of 37%, and 8-4 ± 0.26% of nitrogen content produced the highest amount of chitosan, 17.053 ± 0.95 g/kg dry substrate after 12 days. Also, chitosan was extracted from A. niger on Sabouraud Dextrose Broth medium in submerged fermentation (0.8455 g/l after 12 days of cultivation). The yield of chitosan isolated in SSF was about 15-20 times more than in... 

    Model predictive control of blood sugar in patients with type-1 diabetes

    , Article Optimal Control Applications and Methods ; Volume 37, Issue 4 , 2016 , Pages 559-573 ; 01432087 (ISSN) Abedini Najafabadi, H ; Shahrokhi, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    In this article, two adaptive model predictive controllers (AMPC) are applied to regulate the blood glucose in type 1 diabetic patients. The first controller is constructed based on a linear model, while the second one is designed by using a nonlinear Hammerstein model. The adaptive version of these control schemes is considered to make them more robust against model mismatches and external disturbances. The least squares method with forgetting factor is used to update the model parameters. For simulation study, two well-known mathematical models namely, Puckett and Hovorka which describe the dynamical behavior of patient's body have been selected. The performances and robustness of the... 

    Numerical simulation of the behavior of toroidal and spheroidal multicellular aggregates in microfluidic devices with microwell and U-shaped barrier

    , Article Micromachines ; Volume 8, Issue 12 , 2017 ; 2072666X (ISSN) Barisam, M ; Saidi, M. S ; Kashaninejad, N ; Vadivelu, R ; Nguyen, N. T ; Sharif University of Technology
    Abstract
    A microfluidic system provides an excellent platform for cellular studies. Most importantly, a three-dimensional (3D) cell culture model reconstructs more accurately the in vivo microenvironment of tissue. Accordingly, microfluidic 3D cell culture devices could be ideal candidates for in vitro cell culture platforms. In this paper, two types of 3D cellular aggregates, i.e., toroid and spheroid, are numerically studied. The studies are carried out for microfluidic systems containing U-shaped barrier as well as microwell structure. For the first time, we obtain oxygen and glucose concentration distributions inside a toroid aggregate as well as the shear stress on its surface and compare its... 

    Biodegradation of cyanide under alkaline conditions by a strain of pseudomonas putida isolated from gold mine soil and optimization of process variables through response surface methodology (RSM)

    , Article Periodica Polytechnica Chemical Engineering ; Volume 62, Issue 3 , May , 2018 , Pages 265-273 ; 03245853 (ISSN) Moradkhani, M ; Yaghmaei, S ; Ghobadi Nejad, Z ; Sharif University of Technology
    Budapest University of Technology and Economics  2018
    Abstract
    In regard to highly poisonous effects of cyanide ion, concerns have been focused recently on treatment of such compounds in different ways. Four bacterial strains (C1-C4) capable of using cyanide as nitrogen source were isolated from contaminated gold mine soil samples under alkaline conditions at 30 °C, pH 9.5-10.5, and agitation speed 150 rpm. The gram-negative bacterium C3 (identified as Pseudomonas parafulva NBRC 16636(T) by 16S rRNA gene sequencing) was able to tolerate cyanide up to 500 ppm besides removing 93.5% of 200 ppm cyanide in 13 days which was confirmed by microorganisms growth. The addition of basal salts enhanced the removal efficiency of C3 by 16%. Cyanide removal... 

    Production of chitosan by submerged fermentation from Aspergillus niger

    , Article Scientia Iranica ; Volume 16, Issue 2 C , 2009 , Pages 145-148 ; 10263098 (ISSN) Maghsoodi, V ; Razavi, J ; Yaghmaei, S ; Sharif University of Technology
    2009
    Abstract
    The effect of glucose concentration in submerged fermentation (SMF) on chitosan production by Aspergillus niger was investigated. A. niger, BBRC, 20004, from the Biochemical and Bioenvironmental Research Centre at Sharif University of Technology, Tehran, Iran, was grown in a Sabouro Dextrose media. Chitosan was extracted from the fungal mycelia using hot alkaline and acid treatment and after 12 days of cultivation, 0.8455 g chitosan /l of the fermentation medium was obtained. The content of glucose in the Sobouro Dextrose Broth media was also changed and the highest yield of chitosan 0.9121 g/l was obtained in Sobouro Dextrose Broth media containing 8% glucose. © Sharif University of... 

    Development and verification of a model to describe an immobilized glucose isomerase packed bed bioreactor

    , Article Biochemical Engineering Journal ; Volume 40, Issue 2 , 2008 , Pages 328-336 ; 1369703X (ISSN) Khalilpour, R ; Roostaazad, R ; Sharif University of Technology
    2008
    Abstract
    In this paper, the performance of immobilized packed bed glucose isomerase enzyme was mathematically modeled. A modified Michaelis-Menten type relation was used to describe the enzyme kinetics. Mass transfer inside the biocatalyst particle and through the bed column was analyzed simultaneously. Using measured data, physicochemical properties including diffusivity, viscosity and density of sugar solutions were correlated with its concentrations and were used to provide precision in solving the set of model equations. Model equations were solved using the Runge-Kutta and Gauss-Seidel algorithms and finite difference numerical method in MATLAB environment. Model output was used to demonstrate... 

    Optimization of HFDS production from date syrup

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 127-134 ; 1728-144X (ISSN) Jamshidi Mokhber, M ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Fructose is utilized as a common sweetener in many food industries. Today, a large amount of HFCS (high fructose corn syrup, an equilibrium mixture of glucose and fructose) is produced by glucose isomerase, immobilized enzymes from corn starch. There are a lot of date palms in Iran. Date is a favorable source of carbohydrates, and a suitable source for HFDS (high fructose date syrup) production. In this investigation, date syrup properties were first determined and the operational conditions for glucose isomerase application were optimized respectively. Ion exchange chromatography has been utilized for carbohydrate separation. Fructose obtained from chromatographic column reached 90 %... 

    Efficient electrocatalytic oxidation of water and glucose on dendritic-shaped multicomponent transition metals/spongy graphene composites

    , Article Electrochimica Acta ; Volume 386 , 2021 ; 00134686 (ISSN) Nourmohammadi Khiarak, B ; Mohammadi, R ; Mojaddami, M ; Rahmati, R ; Hemmati, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    To improve the efficiency of electrochemical processes for environmental remediation, we present a new type of hybrid nanomaterials based on leaf-like copper-based quaternary transition metals and spongy monolayer graphene. To demonstrate the functionality of the hybrid electrocatalyst, fast and competent electrooxidation of water and glucose is shown. The mechanism of improved catalysis is ascribed to the synergetic catalytic effect of quaternary Cu-Ni-Fe-Co alloy with dendritic morphology along with the highly conductive and spongy structure of the graphene monolayer. It is shown that water oxidation can be performed at a low overpotential of 315 mV to reach a current denisty of 100 mA... 

    Exergy cost analysis of soil-plant system

    , Article International Journal of Exergy ; Volume 38, Issue 3 , 2022 , Pages 293-319 ; 17428297 (ISSN) Ledari, M. B ; Saboohi, Y ; Valero, A ; Azamian, S ; Sharif University of Technology
    Inderscience Publishers  2022
    Abstract
    In this paper, inspired by a gas turbine power plant, the interaction between plant-soil processes has been simulated. It is aimed to indicate that solar energy in the photosynthesis process is equivalent to the fuel in combustion chambers. In the glucose production process, when solar exergy is considered as a fuel, 99.4% of total exergy cost is supplied by solar exergy and only 0.6% of the exergy cost is provided by nutrients’ content. In general, 30% of the total exergy entering the Calvin cycle is consumed in glucose production and the remaining 70% is related to biomass generation (as flue gas in the gas turbine). Moreover, 98% of the total exergy cost of the soil box is related to... 

    Computational insight into networking H-bonds in open and cyclic forms of glucose

    , Article Journal of Physical Organic Chemistry ; Volume 35, Issue 1 , 2022 ; 08943230 (ISSN) Kotena, Z. M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    We have studied the intramolecular H-bonds existing in cyclic and open forms of glucose using B3LYP/6-311++G(d,p) level, AIM, and NBO methods. The theoretical results indicated that based on acidity values, (ΔHacid), glucose in the open form is more acidic than cyclic form. The acidity values for open and cyclic glucose (332 and 338 kcal/mol) exhibit significantly lower values (i.e., stronger acid) than the reported acidity values for α-/ß-anomers of D-glucopyranose and simple alcohols. Because their conjugate bases are more stabilized through trifurcated and bifurcated intramolecular H-bonds. AIM analysis showed normal H-bonds in the conjugate bases of open glucose (O-Glc), bifurcated, and...