Loading...
Search for: governing-equations
0.011 seconds
Total 250 records

    Numerical modeling of incline plate LiBr absorber

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 47, Issue 3 , November , 2011 , Pages 259-267 ; 09477411 (ISSN) Karami, S ; Farhanieh, B ; Sharif University of Technology
    2011
    Abstract
    Among major components of LiBr-H 2O absorption chillers is the absorber, which has a direct effect on the chillier size and whose characteristics have significant effects on the overall efficiency of absorption machines. In this article, heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled incline plate absorber in the Reynolds number range of 5

    Spatial resolution enhancement in fiber Raman distributed temperature sensor by employing ForWaRD deconvolution algorithm

    , Article Optical Fiber Technology ; Volume 17, Issue 2 , 2011 , Pages 128-134 ; 10685200 (ISSN) Bahrampour, A. R ; Moosavi, A ; Bahrampour, M. J ; Safaei, L ; Sharif University of Technology
    Abstract
    Governing equations of a Raman fiber distributed temperature sensor supported by a counter propagating pumped Raman amplifier are written in the form of integral equations. Forward pump and backward going probe are in the pulsed and continuous wave modes of operation respectively. It is shown that powers of the forward and backward Raman signals (stokes and anti stokes) approximately are the convolution of the input forward pump pulse and corresponding optical fiber impulse responses. The Fourier Wavelet Regularized Deconvolution (ForWaRD) method is employed to improve the spatial resolution in fiber Raman distributed temperature sensor without reducing the pulse width of the laser source  

    Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation

    , Article Applied Mathematical Modelling ; Volume 35, Issue 1 , 2011 , Pages 130-138 ; 0307904X (ISSN) Baghani, M ; Jafari Talookolaei, R. A ; Salarieh, H ; Sharif University of Technology
    Abstract
    The purpose of this paper is to present efficient and accurate analytical expressions for large amplitude free vibration and post-buckling analysis of unsymmetrically laminated composite beams on elastic foundation. Geometric nonlinearity is considered using Von Karman's strain-displacement relations. Besides, the elastic foundation has cubic nonlinearity with shearing layer. The nonlinear governing equation is solved by employing the variational iteration method (VIM). This study shows that the third-order approximation of the VIM leads to highly accurate solutions which are valid for a wide range of vibration amplitudes. The effects of different parameters on the ratio of nonlinear to... 

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The... 

    Free fall and controlled gravity drainage processes in fractured porous media: Laboratory and modelling investigation

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 12 , October , 2015 , Pages 2286-2297 ; 00084034 (ISSN) Saedi, B ; Ayatollahi, S ; Masihi, M ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    Gravity drainage is known to be one of the most effective methods for oil recovery in fractured reservoirs. In this study, both free fall and controlled gravity drainage processes were studied using a transparent fractured experimental model, followed by modelling using commercial CFD software. The governing equations were employed based on the Darcy and mass conservation laws and partial pressure formulation. Comprehensive examination was done on variables such as fluid saturation, velocity, and pressure distribution in the matrix and fracture, as well as fluid front level and production rate. Additionally, effects of the model parameters on the gravity drainage performance were... 

    A comparative study of two cavitation modeling strategies for simulation of inviscid cavitating flows

    , Article Ocean Engineering ; Volume 108 , November , 2015 , Pages 257-275 ; 00298018 (ISSN) Hejranfar, K ; Ezzatneshan, E ; Fattah Hesari, K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In the present work, two cavitation modeling strategies, namely the barotropic cavitation model and the transport equation-based model are applied and assessed for the numerical simulation of inviscid cavitating flows over two-dimensional and axisymmetric geometries. The algorithm uses the preconditioned Euler equations employing the interface capturing method for both the cavitation models. A same numerical solution procedure is used herein for discretizing the governing equations resulting from these two cavitation modeling strategies for the assessment to be valid and reliable. A central difference finite-volume scheme employing the suitable dissipation terms to account for density jumps... 

    A new approach to the elastic–plastic stress transfer analysis of metal matrix composites

    , Article Archive of Applied Mechanics ; Volume 85, Issue 11 , November , 2015 , Pages 1701-1717 ; 09391533 (ISSN) Khosoussi, S ; Mondali, M ; Abedian, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    An analytical approach is proposed for studying the elastic–plastic behavior of short-fiber-reinforced metal matrix composites under tensile loading. In the proposed research, a micromechanical approach is employed, considering an axisymmetric unit cell including one fiber and the surrounding matrix. First, the governing equations and the boundary conditions are derived and the elastic solution is obtained based on some shear-lag-type methods. Since under normal loading conditions and according to the fiber material characteristics, the metal matrix undergoes plastic deformation, while the fiber remains within the elastic region, a plastic deformation is considered for the matrix under each... 

    CFD simulation of airflow in the side-platform stations

    , Article MATEC Web of Conferences, 20 July 2015 through 21 July 2015 ; Volume 28 , 2015 ; 2261236X (ISSN) Adibi, O ; Farhanieh, B ; Afshin, H ; Wei-Hsin L ; Zhihua G ; Sharif University of Technology
    EDP Sciences  2015
    Abstract
    Design of an appropriate ventilation system is one of the main concerns in the construction of subways. In this paper, thermal comforts of side-platform stations are investigated by numerical methods. For the numerical simulation, grids are generated by structured methods and governing equations are discretized by finite volume methods. In the numerical simulation, second order upwind and second order central difference scheme are used to consider the convection and diffusion terms of momentum and energy equations, respectively. Results of this study show that in term of thermal comfort, region next to the hallway and the middle part of the platform is the worst zones of the station. In... 

    Study of heterogeneity loss in upscaling of geological maps by introducing a cluster-based heterogeneity number

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 436 , October , 2015 , Pages 1-13 ; 03784371 (ISSN) Ganjeh Ghazvini, M ; Masihi, M ; Baghalha, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The prediction of flow behavior in porous media can provide useful insights into the mechanisms involved in CO2 sequestration, petroleum engineering and hydrology. The multi-phase flow is usually simulated by solving the governing equations over an efficient model. The geostatistical (or fine grid) models are rarely used for simulation purposes because they have too many cells. A common approach is to coarsen a fine gird realization by an upscaling method. Although upscaling can speed up the flow simulation, it neglects the fine scale heterogeneity. The heterogeneity loss reduces the accuracy of simulation results. In this paper, the relation between heterogeneity loss during upscaling and... 

    A fresh insight into Kane's equations of motion

    , Article Robotica ; 2015 ; 02635747 (ISSN) Pishkenari, H. N ; Yousefsani, S. A ; Gaskarimahalle, A. L ; Oskouei, S. B. G ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    With rapid development of methods for dynamic systems modeling, those with less computation effort are becoming increasingly attractive for different applications. This paper introduces a new form of Kane's equations expressed in the matrix notation. The proposed form can efficiently lead to equations of motion of multi-body dynamic systems particularly those exposed to large number of nonholonomic constraints. This approach can be used in a recursive manner resulting in governing equations with considerably less computational operations. In addition to classic equations of motion, an efficient matrix form of impulse Kane formulations is derived for systems exposed to impulsive forces.... 

    Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations

    , Article Composite Structures ; Volume 126 , 2015 , Pages 52-61 ; 02638223 (ISSN) Torkaman Asadi, M. A ; Rahmanian, M ; Firouz-Abadi, R. D ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In the present study, free vibrations and stability of rotating single walled carbon nanotubes (SWCNT) is investigated by nonlocal theory of elasticity; while the CNT is partially resting on an elastic foundation. The governing equations of motion are presented by using Love's shell assumptions. An exact series expansion method of solution is employed and very accurate results are obtained. Some parameter studies including the effects of rotating speed, foundation stiffness, slenderness ratio and nonlocal parameter on the natural frequency and stability margins of the current model are studied. The studies show that rotation rates and foundation elasticity can contribute significantly in the... 

    Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines

    , Article Acta Mechanica ; Volume 226, Issue 9 , September , 2015 , Pages 3085-3096 ; 00015970 (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Springer-Verlag Wien  2015
    Abstract
    The coupled three-dimensional flexural vibrations of a micro-rotating shaft–disk system, as a basic model for micro-engines, are investigated in this paper by considering small-scale effects utilizing the modified couple stress theory. Governing equations of motion are derived by the use of Hamilton’s principle. Then, implementing the Galerkin approach, an infinite set of ordinary differential equations is obtained for the system. With truncated two-term equations, expressions for the first two natural frequencies are written, and for the two corresponding modes, the maximum rotational speed up to which the system will be stable is analytically determined. Parametric studies on the results... 

    Thermo acoustic study of carbon nanotubes in near and far field: Theory, simulation, and experiment

    , Article Journal of Applied Physics ; Volume 117, Issue 9 , 2015 ; 00218979 (ISSN) Asadzadeh, S. S ; Moosavi, A ; Huynh, C ; Saleki, O ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    Carbon nanotube webs exhibit interesting properties when used as thermo-acoustic projectors. This work studies thermo-acoustic effect of these sound sources both in near and far field regions. Based on two alternative forms of the energy equation, we have developed a straightforward formula for calculation of pressure field, which is consistent with experimental data in far field. Also we have solved full 3-D governing equations using numerical methods. Our three-dimensional simulation and experimental data show pressure waves are highly affected by dimensions of sound sources in near field due to interference effects. However, generation of sound waves in far field is independent of... 

    Flexural vibration characteristics of micro-rotors based on the strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 7, Issue 5 , October , 2015 ; 17588251 (ISSN) Asghari, M ; Hashemi, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    In this paper, the coupled three-dimensional flexural vibration of micro-rotors is investigated by taking into account the small-scale effects utilizing the strain gradient theory, which is a powerful nonclassical continuum theory in capturing small-scale effects. A micro-rotor consists mainly of a flexible micro-rotating shaft and a disk. With the aid of Hamilton's principle, governing equations of motion are derived and then transformed to the complex form. By implementing the Galerkin's method, a coupled ordinary differential equation is attained for the system. Expressions for the first two natural frequencies of the spinning micro-rotors are obtained with truncated two-term equation.... 

    Congestion effect on maximum dynamic stresses of bridges

    , Article Structural Engineering and Mechanics ; Volume 55, Issue 1 , 2015 , Pages 111-135 ; 12254568 (ISSN) Samanipour, K ; Vafaia, H ; Sharif University of Technology
    Techno Press  2015
    Abstract
    Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper presents how to model congestion on bridges and how the maximum dynamic stress of bridges change during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is applied to the maximum static moment under static loading. This paper presents an algorithm to solve the governing equation of the bridge as well as the equations of motions of two real European trucks with different speeds, simultaneously. It will be shown, considering congestion in eight case... 

    Study of the triple-mass tethered satellite system under aerodynamic drag and J2 perturbations

    , Article Advances in Space Research ; Volume 56, Issue 10 , November , 2015 , Pages 2141-2150 ; 02731177 (ISSN) Razzaghi, P ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The dynamics of multi-tethered satellite formations consisting of three masses are studied in this paper. The triple-mass triple-tethered satellite system is modeled under the low Earth orbit perturbations of drag and Earth's oblateness and its equilibrium conditions are derived. It is modeled as three equal end-masses connected by a uniform-mass straight tether. The lengths of tethers are supposed to be constant and in this manner the angles of the plane consisting the masses are taken as the state variables of the system. The governing equations of motion are derived using Lagrangian approach. The aerodynamic drag perturbation is expressed as an external nonconservative force and the Earth... 

    Analytical solution for axisymmetric buckling of joined conical shells under axial compression

    , Article Structural Engineering and Mechanics ; Volume 54, Issue 4 , 2015 , Pages 649-664 ; 12254568 (ISSN) Kouchakzadeh, M. A ; Shakouri, M ; Sharif University of Technology
    Techno Press  2015
    Abstract
    In this study, the authors present an analytical approach to find the axisymmetric buckling load of two joined isotropic conical shells under axial compression. The problem of two joined conical shells may be considered as the generalized form of joined cylindrical and conical shells with constant or stepped thicknesses. Thickness of each cone is constant; however it may be different from the thickness of the other cone. The boundary conditions are assumed to be simply supported with rigid rings. The governing equations for the conical shells are obtained and solved with an analytical approach. A simple closed-form expression is obtained for the buckling load of two joined truncated conical... 

    Free vibration analysis of multilayered functionally graded composite cylinder

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 13 , 2010 , Pages 441-450 ; 9780791844502 (ISBN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    Free vibration of multilayered composite cylinder which volume fraction of fiber varies according to power law in longitudinal direction has been studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fibrous functionally graded composite. Straindisplacement relations employed are based on Reissner- Naghdi-Berry's shell theory. The displacement finite element model of the governing equations of motion is derived by writing weak form of them. The Lagrangian shape functions for in-plane displacements and Hermitian shape functions for displacement in normal direction to the surface of mid-plane are utilized by defining a conformal quadrilateral... 

    Thermo-elastic analysis of thick-walled cylinders made of Functionally Graded materials using the strain gradient elasticity

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 2 , 2010 , Pages 1-6 ; 9780791844168 (ISBN) Sadeghi, H ; Baghani, M ; Naghdabadi, R ; Aerospace Division ; Sharif University of Technology
    Abstract
    In this paper, strain gradient thermo-elasticity formulation for Functionally Graded (FG) thick-walled cylinders is presented. Elastic strain energy density function is considered to be a function of gradient of strain tensor in addition to the strain tensor. The material properties are assumed to vary according to power law in radial direction. Using the constitutive equations and equation of equilibrium in the cylindrical coordinates, fourth order non-homogenous governing equation for thermo-elastic analysis of thick-walled FG cylinders subjected to thermal and mechanical loadings is obtained and solved numerically. Results show that the intrinsic length parameter affects the stress... 

    Two phase gas-liquid bubbly flow modeling in vertical mini pipe

    , Article 2010 14th International Heat Transfer Conference, IHTC 14, 8 August 2010 through 13 August 2010 ; Volume 3 , 2010 , Pages 947-956 ; 9780791849385 (ISBN) Kebriaee, M. H ; Karabi, H ; Khorsandi, S ; Saidi, M. H ; Heat Transfer Division ; Sharif University of Technology
    Abstract
    Studies on two-phase flow in small scale pipes have become more important, because of the application of mini-scale devices in several engineering fields including, high heat-flux compact heat exchangers, and cooling systems of various types of equipment. In a mini pipe the behavior of two phase flow is not the same as flow in conventional pipes. The difference is caused by different effective forces; for e. g. inside a mini pipe capillary forces are more important in comparison with gravitational forces. This paper is devoted to numerical simulation of gas-liquid two phase flow in a vertical mini pipe. Prediction of bubble shape and the effects of gas and liquid velocities on flow...