Loading...
Search for: grain-boundaries
0.009 seconds
Total 126 records

    Dynamic restoration and microstructural evolution during hot deformation of a P/M Al6063 alloy

    , Article Materials Science and Engineering A ; Volume 542 , April , 2012 , Pages 56-63 ; 09215093 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2012
    Abstract
    Hot deformation behavior of Al6063 alloy produced by direct powder extrusion was studied by means of uniaxial compression test in the temperature range between 300 and 450°C and strain rate range between 0.01 and 1s -1. Electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM) were utilized to study the microstructure of the material before and after the hot deformation. The microstructure of the extruded alloy consisted of elongated grains within a subgrain structure and small grains free of low angle grain boundaries (LAGBs). An equiaxed duplex microstructure consisting of large substructured grains and fine grains separated by high angle grain boundaries... 

    Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments

    , Article Journal of Alloys and Compounds ; Volume 512, Issue 1 , January , 2012 , Pages 340-350 ; 09258388 (ISSN) Hosseini, S. S ; Nategh, S ; Ekrami, A. A ; Sharif University of Technology
    2012
    Abstract
    IN738LC is one of the superior nickel base superalloys utilized at high temperatures in aggressive environments. However, experiencing high temperatures and stresses during service causes microstructure deterioration and degradation of mechanical properties in this alloy. To restore the microstructure and mechanical properties of the degraded alloy, rejuvenation heat treatments can be considered. In this study, the evolution of microstructural features in a creep damaged IN738LC superalloy during different stages of rejuvenation heat treatment cycles was investigated. During solution treatment stage, dissolution of coarsened γ′ precipitates, grain boundary films and transition zone around... 

    Hydrogen sensor based on MWNTs/WO 3

    , Article Proceedings of IEEE Sensors ; 2011 , Pages 5-7 ; 9781424492886 (ISBN) Azam, I. Z ; Roghayeh, G ; IEEE SENSORS Council ; Sharif University of Technology
    Abstract
    In this article we report hydrogen sensing property of WO 3/MWNTs thin films that were fabricated by spin-coating on alumina substrates. The MWNTs were initially functionalized (f-MWNTs) to enhance dispersion in the sol of multiwalled carbon nanotubes (MWNTs) and tungsten trioxide (WO 3). Microstructure, morphology and chemical composition of the materials were characterized by SEM, TEM, XRD and XPS methods. Our results show WO 3 nanoparticles were nucleated on oxygenated group on surface of f-MWNTs in hybrid suspension. After annealing the films at 350 °C, electrical conductance measurements at different operating temperature were performed and the results indicates rather fast and linear... 

    Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process

    , Article Materials and Design ; Volume 32, Issue 10 , December , 2011 , Pages 5010-5014 ; 02641275 (ISSN) Rastegari, H. A ; Asgari, S ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, Ti-6Al-4V/TiC composite was fabricated by VIM furnace and graphite crucible. X-ray diffraction analysis and EDS techniques were used to identify the phases in the material. Microstructure characteristics of the Ti-6Al-4V/TiC composite were evaluated by means of optical microscopy. The tensile test was performed at room temperature after hot-rolling of the samples in the beta phase field. The results revealed that at different melting times, three kinds of precipitates are formed in the microstructure including grain boundary, eutectic and transgranular precipitates. The size of transgranular precipitates was significantly larger than that of the other two types of carbides and... 

    Hot deformation of ultrafine-grained Al6063/Al2O3 nanocomposites

    , Article Journal of Materials Science ; Volume 46, Issue 14 , July , 2011 , Pages 4994-5001 ; 00222461 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2011
    Abstract
    Ultrafine-grained (UFG) Al6063 alloy reinforced with 0.8 vol% nanometric alumina particles (25 nm) was prepared by reactive mechanical alloying and direct powder extrusion. Transmission electron microscopy and electron backscatter diffraction analysis showed that the grain structure of the nanocomposite composed of nanosize grains (<0.1 μm), ultrafine grains (0.1-1 μm) and micronsize grains (>1 μm) with random orientations. Mechanical properties of the material were examined at room and high temperatures by compression test. It was found that the yield strength of the UFG composite material is mainly controlled by the Orowan mechanism rather than the grain boundaries. The deformation... 

    Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy

    , Article Materials Science and Engineering A ; Volume 528, Issue 12 , 2011 , Pages 3981-3989 ; 09215093 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Nanostructured AA6063 (NS-Al) powder with an average grain size of ~100. nm was synthesized by high-energy attrition milling of gas-atomized AA6063 powder followed by hot extrusion. The microstructural features of the consolidated specimen were studied by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) techniques and compared with those of coarse-grained AA6063 (CG-Al) produced by hot powder extrusion of gas-atomized powder (without using mechanical milling). The consolidated NS-Al alloy consisted of elongated ultrafine grains (aspect ratio of ~2.9) and equiaxed nanostructured grains. A high fraction (~78%) of high-angle grain boundaries with average... 

    Microstructure and mechanical properties of oxide-dispersion strengthened al6063 alloy with ultra-fine grain structure

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 3 , 2011 , Pages 816-824 ; 10735623 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (∼2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains... 

    Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel

    , Article Journal of Materials Processing Technology ; Volume 211, Issue 3 , 2011 , Pages 368-375 ; 09240136 (ISSN) Moeinifar, S ; Kokabi, A. H ; Hosseini, H. R. M ; Sharif University of Technology
    Abstract
    The influence of thermal cycles on the properties of the coarse grained heat affected zone in X80 microalloyed steel has been investigated. The thermal simulated involved heating the X80 steel specimens to the peak temperature of 1400 °C, with different cooling rates. The four-wire tandem submerged arc welding process, with different heat input values, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between the bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat... 

    Phase formation during sintering of nanocrystalline zirconia/stainless steel functionally graded composite layers

    , Article Materials Letters ; Volume 65, Issue 3 , February , 2011 , Pages 523-526 ; 0167577X (ISSN) Dourandish, M ; Simchi, A ; Hokamoto, K ; Tanaka, S ; Sharif University of Technology
    Abstract
    Microstructural development and phase formation at the interface of yttria stabilized zirconia (3Y-TZP)/430L stainless steel composite layers produced by co-sintering method were studied by SEM, HRTEM, micro-focus XRD, and EPMA. Formation of a rich chromium boundary layer at the interface was noticed, which revealed Cr aggregation at the interface at the elevated temperatures. Misfit dislocations were also observed at the joint interface to tackle the mismatch crystallographic orientations between the ceramic and metal layer. The results of the micro-focus XRD showed formation of no new phases at the boundary zone. Microstructural studies also revealed a retarded grain growth in the... 

    Preparation of nanostructured high-temperature TZM alloy by mechanical alloying and sintering

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 29, Issue 1 , 2011 , Pages 141-145 ; 02634368 (ISSN) Ahmadi, E ; Malekzadeh, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Mechanical milling proceeded by sintering was used to synthesize nanostructured temperature-resistant TZM alloy. Milling under Ar for different times (1, 2, 3, 5, 10, 15, 20, 25, and 30 h) and sintering at 1500, 1600 and 1700 °C for 30, 45, 60 and 90 min resulted in increasing of low-energy grain boundaries (LEGBs) and dispersion of TiC and ZrC with a size of ~ 65 nm in the matrix near LEGBs. Morphology and grain size of the products were determined from scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns, almost precisely. Optimum density of nanostructured TZM alloy ~ 9.95 ± 0.01 g/cm 3 was achieved by sintering at 1700 °C for 90 min  

    Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum-magnesium alloy

    , Article Materials Science and Engineering A ; Volume 642 , August , 2015 , Pages 215-229 ; 09215093 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Švec, P ; Simančík, F ; Gerlich, A. P ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    An aluminum-magnesium alloy was friction-stir processed in the presence of TiO2 nanoparticles which were pre-placed in a groove on the surface to produce a composite. Field emission-scanning and transmission electron microscopy studies show that solid state chemical reactions occur between the Al-Mg matrix and the ceramic particles upon the severe plastic deformation process. The microstructure of the aluminum alloy consists of a coarse grain structure, large complex (Fe,Mn,Cr)3SiAl12 particles, and small Mg2Si precipitates. After friction stir processing, a deformed grain structure containing rod-like Al-Fe-Mn-Si precipitates is attained, along... 

    In-situ aluminum matrix composite produced by friction stir processing using FE particles

    , Article Materials Science and Engineering A ; Volume 641 , 2015 , Pages 380-390 ; 09215093 (ISSN) Sarkari Khorrami, M ; Samadi, S ; Janghorban, Z ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In-situ aluminum matrix composites were fabricated by 1-3 passes of friction stir process (FSP) using iron (Fe) particles with initial size of 10. μm. Although the initial reinforcing particles were relatively large in size and also agglomerated particles were formed in the obtained composites, all of the processed specimens fractured from the base metal during transverse tensile test. Longitudinal tensile tests revealed that the ultimate tensile strength (UTS) of the composites was up to 43% higher than that of the base metal; however, the strain to fracture of the composites reached to about 0.2. Al-Fe intermetallic compounds (IMCs) formed at the interface of the aluminum matrix and Fe... 

    Stress relaxation and flow behavior of ultrafine grained AA 1050

    , Article Mechanics of Materials ; Volume 89 , 2015 , Pages 23-34 ; 01676636 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Yoon, Y. O ; Kim, S. K ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract Flow behavior of ultrafine grained (UFG) AA 1050 sheets processed by Accumulative Roll-Bonding (ARB) and its viscous nature are investigated by plane strain compression test (PSC) along with stress relaxation. Occurrence of dynamic recovery is validated by TEM observations as the microstructural explanation of the flow softening at the start of deformation of the 8-cycles specimen. Significant recovery of the UFG specimens during the stress relaxation test is also disclosed. It is discussed that neither the internal stress (σi) nor the density of mobile dislocations are constant during the test. The possible effects of these two factors as well as contribution of the... 

    Influence of annealing treatment on micro/macro-texture and texture dependent magnetic properties in cold rolled FeCo-7.15V alloy

    , Article Journal of Magnetism and Magnetic Materials ; Volume 378 , March , 2015 , Pages 253-260 ; 03048853 (ISSN) Hasani, S ; Shamanian, M ; Shafyei, A ; Behjati, P ; Nezakat, M ; Fathi Moghaddam, M ; Szpunar, J. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The influence of annealing treatment on macro- and micro-texture of cold-rolled FeCo-7.15V ferro-magnetic ultra-thin foils were studied. The microstructural studies performed by field emission scanning electron microscope (FE-SEM) showed the formation of paramagnetic precipitations ((Fe, Co)3V) during annealing. During cold rolling of the FeCo-7.15V magnet, the texture components of type (113)[110], (001)[110], (111)[110], and (111)[121], all related to α and γ-fibers were formed. X-ray diffraction (XRD) and local texture measurements performed by electron backscatter diffraction (EBSD) were made on the annealed samples. Both methods revealed that the recrystallized samples have texture... 

    Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing

    , Article Materials Science and Engineering A ; Volume 626 , 2015 , Pages 458-466 ; 09215093 (ISSN) Khodabakhshi, F ; Gerlich, A. P ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    A fine-grained aluminum-matrix hybrid nanocomposite reinforced with TiO2, MgO and Al3Ti nanoparticles was prepared via reactive friction stir processing (FSP) of an Al-Mg sheet with pre-placed TiO2 particles (50nm; 3.1vol%). The microstructure of the hybrid nanocomposite comprises high-angle grain boundaries (~90%) with an average size of 2μm and hard inclusions with sizes in the range of 30-50nm. Evaluation of the hot deformation behavior of the nanocomposite by uniaxial tensile testing at different temperatures (300-450°C) and strain rates (0.001-0.1s-1) shows that the deformation apparent activation energy of the nanocomposite is 137kJmol-1 at ≤300°C. The values of the activation energy... 

    Mechanisms governing microstructural evolution during consolidation of nanoparticles

    , Article Materials and Manufacturing Processes ; Volume 30, Issue 11 , 2015 , Pages 1397-1402 ; 10426914 (ISSN) Tavakol, M ; Mahnama, M ; Naghdabadi, R ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    In micron-scale, powder consolidation process is driven by diffusion phenomenon, while in nano-scale the higher surface energy of particles leads to some anomalous behaviors within the process. In order to investigate the nano-sintering occurrence, an atomistic approach is employed via molecular dynamics simulations. Within this approach, the effect of particle size and temperature is examined. The study of particle structure emphasizes on a transition on the governing mechanism of process depending on the material energy levels. The results show that in a specific particle size at low temperatures, the main sintering mechanism is the plastic deformation, while at elevated temperatures it... 

    Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite

    , Article Scripta Materialia ; Volume 95, Issue 1 , 2015 , Pages 23-26 ; 13596462 (ISSN) Ghaffarian, H ; Karimi Taheri, A ; Kang, K ; Ryu, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Molecular dynamics simulations combined with quantitative atomic displacement analyses were performed to study the deformation behaviors of polycrystalline cementite (Fe3C). At low temperature and large grain size, dislocation glide acts as the preferred deformation mechanism. Due to the limited number of slip systems at low temperature, polycrystalline cementite breaks by forming voids at grain boundaries upon tensile loading. When the temperature rises or the grain size reduces, grain boundary sliding becomes the primary mechanism and plastic deformation is accommodated effectively  

    Static recrystallization behavior of AEREX350 superalloy

    , Article Materials Science and Engineering A ; Volume 527, Issue 27-28 , October , 2010 , Pages 7313-7317 ; 09215093 (ISSN) Hosseinifar, M ; Asgari, S ; Sharif University of Technology
    2010
    Abstract
    The recrystallization behavior of a commercial nickel-cobalt base superalloy, AEREX 350, is investigated by means of hardness test, X-ray diffraction, and microscopy. It is found that the alloy resists recrystallization up to a high temperature of 1025 °C. Recrystallized grains are readily formed at grain boundaries below this temperature; however, the growth of these new grains is inhibited by Widmanstätten η particles having coherent facets with the nickel matrix (γ). The passage of the recrystallization front results in coherency loss and consequently dissolution of the η platelets. Recrystallization proceeds with a discontinuous precipitation of the η phase behind the moving boundary  

    Semisolid structure for M2 high speed steel prepared by cooling slope

    , Article Journal of Materials Processing Technology ; Volume 210, Issue 12 , September , 2010 , Pages 1632-1635 ; 09240136 (ISSN) Amin Ahmadi, B ; Aashuri, H ; Sharif University of Technology
    2010
    Abstract
    Effects of cooling slope angle and the temperature of molten metal on the globular structure of M2 high speed steel after holding at the semisolid state have been investigated. The globular structure was achieved by pouring the molten metal at 1595 °C on the ceramic cooling slope with the length of 200 mm and the angle of 25°. The globular structure of M2 high speed steel in the form of rolled-annealed and as cast condition after holding at semisolid state has been achieved. The size of globular grains of cooling slope sample was smaller than that of the rolled-annealed and as cast samples. Solid particles of rolled-annealed sample after holding at semisolid state had better roundness... 

    Mesoporous and nanocrystalline sol-gel derived NiTiO3 at the low temperature: Controlling the structure, size and surface area by Ni:Ti molar ratio

    , Article Solid State Sciences ; Volume 12, Issue 9 , 2010 , Pages 1629-1640 ; 12932558 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline nickel titanate (NiTiO3) thin films and powders with mesoporous structure were produced at the low temperature of 500 °C by a straightforward particulate sol-gel route. The sols were prepared in various Ni:Ti molar ratios. X-ray diffraction and Fourier transform infrared spectroscopy revealed that the powders contained mixtures of the NiTiO 3 and NiO phases, as well as the anatase-TiO2 and the rutile-TiO2 depending on the annealing temperature and Ni:Ti molar ratio. Moreover, it was found that Ni:Ti molar ratio influences the preferable orientation growth of the nickel titanate, being on (202) planes for the nickel dominant powders (Ni:Ti ≥ 75:25) and on (104) planes for the...