Loading...
Search for: grain-boundaries
0.011 seconds
Total 126 records

    Al-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-Ion batteries

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 5 , 2021 , Pages 6369-6378 ; 09574522 (ISSN) Ashuri, M ; Golmohammad, M ; Soleimany Mehranjani, A. R ; Faghihi Sani, M ; Sharif University of Technology
    Springer  2021
    Abstract
    Cubic phase Li7La3Zr2O12 (LLZO) is a promising solid electrolyte for next-generation Li-ion batteries. In this work, the combustion sol–gel technique is used to prepare an Al-doped LLZO solid electrolyte. The crystal structure is investigated, and the cubic phase is confirmed. Densification properties were investigated using SEM and optical dilatometry. The densification of the Al-doped sample takes place in two stages through two different shrinkage rates. Using 0.25 mol Al-dopant 94% relative density is achieved at 1100 °C. The effect of Al-doping on electrochemical properties is investigated in detail using AC impedance spectroscopy. The result indicates that the optimum concentration of... 

    Age-hardening behavior and phase identification in solution-treated AEREX 350 superalloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 37, Issue 7 , 2006 , Pages 2051-2057 ; 10735623 (ISSN) Asgari, S ; Sharif University of Technology
    2006
    Abstract
    This article presents results of an investigation on age-hardening behavior of superalloy AEREX 350. Microhardness testing was employed to evaluate the age-hardening response of the alloy while optical, scanning, and transmission electron microscopy techniques were used to characterize the major phases formed during the aging process. No significant hardening was found in solution-treated samples aged at temperatures up to about 680 °C. Aging at 700 °C up to 950 °C, however, caused a characteristic hardening response. This hardening was concurrent with the formation of γ', an ordered phase with L12 structure, as fine precipitate distributed throughout the fcc matrix. In the temperature range... 

    A criterion for slip transfer at grain boundaries in Al

    , Article Scripta Materialia ; Volume 178 , 2020 , Pages 408-412 Alizadeh, R ; Peña Ortega, M ; Bieler, T. R ; LLorca, J ; Sharif University of Technology
    Acta Materialia Inc  2020
    Abstract
    The slip transfer phenomenon was studied at the grain boundaries of pure Aluminum by means of slip trace analysis. Either slip transfer or blocked slip was analyzed in more than 250 grain boundaries and the likelihood of slip transfer between two slip systems across the boundary was assessed. The experimental results indicate that slip transfer was very likely to occur if the residual Burgers vector, ∆b, was below 0.35b and the Luster–Morris parameter was higher than 0.9, and that the ratio of the Luster–Morris parameter and the residual Burgers vector has a threshold above which slip transfer is probable. © 2019 Acta Materialia Inc  

    A comprehensive evaluation between the efficiency of different treatments in modifying the properties and behavior of magnesium alloys as degradable biomaterials

    , Article Materials and Corrosion ; Volume 68, Issue 9 , 2017 , Pages 995-1003 ; 09475117 (ISSN) Homayun, B ; Afshar, A ; Sharif University of Technology
    Abstract
    The addition of alloying elements to magnesium leads to microstructural refinement and improves its properties. However, this strategy is accompanied by another concurrent phenomenon − that is − intergranular segregation and the formation of secondary phases in grain boundaries, deteriorating the properties. In this work, the efficacy of two main factors on modifying the mechanical properties and corrosion behavior of Mg-4Zn-1Al-0.2Ca alloy was investigated separately: 1) dissolution of secondary phases; and 2) grain refinement. Based on the results, heat treatment of the as-cast alloy can increase the UTS from 174.4 to 213.2 MPa, decrease the corrosion current density from 81 to 49 μA/cm2,... 

    Accurate numerical model for surface scattering, grain boundary scattering, and anomalous skin effect of copper wires

    , Article Proceedings - Winter Simulation Conference ; January , 2013 , Pages 209-210 ; 08917736 (ISSN) ; 9781467348416 (ISBN) Abbaspour, E ; Sarvari, R ; Akbarzadeh, A ; Rostami, M ; Sharif University of Technology
    2013
    Abstract
    In this paper we have studied both DC size effect and anomalous skin effect caused by surface and grain boundary scattering on the resistivity of Cu thin films by a Monte Carlo method. Contribution of each scattering mechanism and the interaction between them are analyzed separately. A simple and fast numerical recursive method is also introduced to guess the structure of electric field and distribution of current inside the thin film to evaluate the surface resistance instead of complicated analytical formulas  

    3D asymmetric carbozole hole transporting materials for perovskite solar cells

    , Article Solar Energy ; Volume 189 , 2019 , Pages 404-411 ; 0038092X (ISSN) Sheibani, E ; Heydari, M ; Ahangar, H ; Mohammadi, H ; Taherian Fard, H ; Taghavinia, N ; Samadpour, M ; Tajabadi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Carbazole compounds are p-type hole-transporting materials (HTMs) useful for perovskite solar cells (PSCs). In this work, we developed a new class of carbazol based HTMs; non-fused 3-D asymmetric structures (S14 and S12) as HTM of PSCs. To the best of our knowledge, there is no report on non-fused HTMs with a high glass transition temperature (Tg = 165 °C), which reduces crystallization and suppresses grain boundaries in glassy film, resulting in long-term durability. Experimental results show that tuning the carbazole moiety in S14 structure has a constructive influence on geometrical alignment, hole mobility, hydrophobicity, stability as well as efficiency. The resultant power conversion...