Loading...
Search for: hardware
0.006 seconds
Total 351 records

    Graph centrality algorithms for hardware trojan detection at gate-level netlists

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 35, Issue 7 , 2022 , Pages 1375-1387 ; 17281431 (ISSN) Hashemi, M ; Momeni, A ; Pashrashid, A ; Mohammadi, S ; Sharif University of Technology
    Materials and Energy Research Center  2022
    Abstract
    The rapid growth in the supply chain of electronic devices has led companies to purchase Intellectual Property or Integrated Circuits from unreliable sources. This dispersion in the design to fabrication stages of IP/IC has led to new attacks called hardware Trojans. Hardware Trojans can bargain information, reduce performance, or cause failure. Various methods have been introduced to detect or prevent hardware Trojans. Machine learning methods are one of these. Selecting the type and number of input variables in the learning algorithm has an important role in the performance of the learning model. Some previous hardware Trojan detection studies have used structural gate-level features to... 

    An integrated human stress detection sensor using supervised algorithms

    , Article IEEE Sensors Journal ; Volume 22, Issue 8 , 2022 , Pages 8216-8223 ; 1530437X (ISSN) Mohammadi, A ; Fakharzadeh, M ; Baraeinejad, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper adopts a holistic approach to stress detection issues in software and hardware phases and aims to develop and evaluate a specific low-power and low-cost sensor using physiological signals. First, a stress detection model is presented using a public data set, where four types of signals, temperature, respiration, electrocardiogram (ECG), and electrodermal activity (EDA), are processed to extract 65 features. Using Kruskal-Wallis analysis, it is shown that 43 out of 65 features demonstrate a significant difference between stress and relaxed states. K nearest neighbor (KNN) algorithm is implemented to distinguish these states, which yields a classification accuracy of 96.0 ± 2.4%. It... 

    Design and implementation of an ultralow-power Ecg patch and smart cloud-based platform

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 71 , 2022 ; 00189456 (ISSN) Baraeinejad, B ; Shayan, M. F ; Vazifeh, A. R ; Rashidi, D ; Hamedani, M. S ; Tavolinejad, H ; Gorji, P ; Razmara, P ; Vaziri, K ; Vashaee, D ; Fakharzadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article reports the development of a new smart electrocardiogram (ECG) monitoring system, consisting of the related hardware, firmware, and Internet of Things (IoT)-based web service for artificial intelligence (AI)-assisted arrhythmia detection and a complementary Android application for data streaming. The hardware aspect of this article proposes an ultralow power patch sampling ECG data at 256 samples/s with 16-bit resolution. The battery life of the device is two weeks per charging, which alongside the flexible and slim (193.7 mm times62.4 mm times8.6 mm) and lightweight (43 g) allows the user to continue real-life activities while the real-time monitoring is being done without... 

    Performance Evaluation of Software-RAID vs. Hardware RAID Controller

    , M.Sc. Thesis Sharif University of Technology Abdi Deiman, Kimia (Author) ; Asadi, Hossein (Supervisor)
    Abstract
    With the increasing volume of digital data, the design of high-performance storage systems has become one of the major concerns of storage architects. Redundant Array of Independent Disks (RAID) based on either software or hardware implementation is commonly used in storage systems. Our thorough survey of previous work shows that there has been no study comparing and characterizing the efficiency of these two implementations on an array of solid state drives. In this thesis, we examine and compare the performance of software RAID compared to hardware RAID controller. In our study, we investigate major performance metrics including bandwidth, latency, and the number of inputs and outputs per... 

    FPGA-based fault tolerant scheme with reduced extra-sensor number for WECS with DFIG

    , Article Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 27 June 2011 through 30 June 2011 ; 2011 , Pages 1595-1601 ; 9781424493128 (ISBN) Shahbazi, M ; Gaillard, A ; Poure, P ; Zolghadri, M. R ; Sharif University of Technology
    2011
    Abstract
    Fast fault detection and converter reconfiguration is necessary for fault tolerant doubly fed induction generator (DFIG) in wind energy conversion systems (WECS) to prevent further damage and to make possible the continuity of service. Extra sensors are needed in order to detect the faults rapidly. In this paper, a very fast FPGA-based fault detection scheme is presented that minimizes the number of additional voltage sensors. A fault tolerant converter topology for this application is studied. Control and fault detection system are implemented on a single FPGA and Hardware in the Loop experiments are performed to evaluate the proposed detection scheme, the digital controller and the fault... 

    Production planning and performance optimization of reconfigurable manufacturing systems using genetic algorithm

    , Article International Journal of Advanced Manufacturing Technology ; Volume 54, Issue 1-4 , 2011 , Pages 373-392 ; 02683768 (ISSN) Abbasi, M ; Houshmand, M ; Sharif University of Technology
    Abstract
    To stay competitive in the new dynamic market having large fluctuations in product demand, manufacturing companies must use systems that not only produce their goods with high productivity but also allow for rapid response to market changes. Reconfigurable manufacturing system (RMS) is a new paradigm that enables manufacturing systems to respond quickly and cost effectively to market demand. In other words, RMS is a system designed from the outset, for rapid changes in both hardware and software components, in order to quickly adjust its production capacity to fluctuations in market demand and adapt its functionality to new products. The effectiveness of an RMS depends on implementing its... 

    Design and Implementation of Time and Frequency Synchronization in LTE

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 23, Issue 12 , January , 2015 , Pages 2970-2982 ; 10638210 (ISSN) Golnari, A ; Shabany, M ; Nezamalhosseini, A ; Gulak, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    A novel architecture for efficient time and frequency synchronization, applied to the long-term evolution (LTE) standard, is proposed. For symbol timing, we propose applying a symbol-folding method on top of the sign-bit reduction technique, leading to a novel algorithm for the cyclic prefix-type recognition in LTE. Following the symbol timing, the fractional carrier frequency offset is estimated and compensated using an adaptive gain loop, which allows for a high-accuracy compensation in a short interval. In the frequency domain, for cell search, we propose a sign-bit reduction technique on top of the matched filter method for the primary synchronization signal detection. In addition, we... 

    CNTFET full-adders for energy-efficient arithmetic applications

    , Article 6th International Conference on Computing, Communications and Networking Technologies, 13 July 2015 through 15 July 2015 ; 2015 ; 9781479979844 (ISBN) Grailoo, M ; Hashemi, M ; Haghshenas, K ; Rezaee, S ; Rapolu, S ; Nikoubin, T ; University of North Texas ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper, we present two energy-efficient full adders (FAs) which are a crucial building block of nano arithmetic logic units (nano-ALUs) with the Cell Design Methodology (CDM). Since the most suitable design configuration for CNT-based ICs is pass transistor configuration (PTL), CDM which properly benefits from PTL advantages is utilized. So the designs herewith take full advantages of simplicity, fewer transistors and better immunity against threshold voltage fluctuations of the PTL than the CCMOS configuration. CDM also resolves two problems of PTL by employing elegant mechanisms which are threshold voltage drop and loss of gain. Using the amend mechanisms and SEA sizing algorithm... 

    Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect

    , Article Superlattices and Microstructures ; Volume 97 , 2016 , Pages 28-45 ; 07496036 (ISSN) Nazari, A ; Faez, R ; Shamloo, H ; Sharif University of Technology
    Academic Press  2016
    Abstract
    In this paper, some important circuit parameters of a monolayer armchair graphene nanoribbon (GNR) field effect transistor (GNRFET) in different structures are studied. Also, these structures are Ideal with no defect, 1SVGNRFET with one single vacancy defect, and 3SVsGNRFET with three SV defects. Moreover, the circuit parameters are extracted based on Semi Classical Top of Barrier Modeling (SCTOBM) method. The I-V characteristics simulations of Ideal GNRFET, 1SVGNRFET and 3SVsGNRFET are used for comparing with SCTOBM method. These simulations are solved with Poisson-Schrodinger equation self-consistently by using Non- Equilibrium Green Function (NEGF) and in the real space approach. The... 

    A standby-sparing technique with low energy-overhead for fault-tolerant hard real-time systems

    , Article Embedded Systems Week 2009 - 7th IEEE/ACM International Conference on Hardware/Software-Co-Design and System Synthesis ; 2009 , Pages 193-202 ; 9781605586281 (ISBN) Ejlali, A ; Al Hashimi, B. M ; Eles, P ; Sharif University of Technology
    Abstract
    Time redundancy (rollback-recovery) and hardware redundancy are commonly used in real-time systems to achieve fault tolerance. From an energy consumption point of view, time redundancy is generally more preferable than hardware redundancy. However, hard real-time systems often use hardware redundancy to meet high reliability requirements of safety-critical applications. In this paper we propose a hardware-redundancy technique with low energy-overhead for hard real-time systems. The proposed technique is based on standby-sparing, where the system is composed of a primary unit and a spare. Through analytical models, we have developed an online energy-management method which uses a slack... 

    A novel nonlinear function evaluation approach for efficient fpga mapping of neuron and synaptic plasticity models

    , Article IEEE Transactions on Biomedical Circuits and Systems ; Volume 13, Issue 2 , 2019 , Pages 454-469 ; 19324545 (ISSN) Jokar, E ; Abolfathi, H ; Ahmadi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Efficient hardware realization of spiking neural networks is of great significance in a wide variety of applications, such as high-speed modeling and simulation of large-scale neural systems. Exploiting the key features of FPGAS, this paper presents a novel nonlinear function evaluation approach, based on an effective uniform piecewise linear segmentation method, to efficiently approximate the nonlinear terms of neuron and synaptic plasticity models targeting low-cost digital implementation. The proposed approach takes advantage of a high-speed and extremely simple segment address encoder unit regardless of the number of segments, and therefore is capable of accurately approximating a given...