Loading...
Search for: heat-convection
0.011 seconds

    Two-dimensional numerical investigation of a micro combustor

    , Article Scientia Iranica ; Volume 17, Issue 6 B , December , 2010 , Pages 433-442 ; 10263098 (ISSN) Irani Rahaghi, A ; Saidi, M. S ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2010
    Abstract
    In this paper, a two-dimensional numerical approach is used to study the effect of micro combustor height, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry is used. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system that leads to two stiff systems of PDEs. In the present work, the computational domain is solved through the Strang splitting method, which is suitable for a nonlinear stiff system of PDEs. A revised boundary condition for the velocity equation is applied and its effect on the flow... 

    Correlation for Nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation

    , Article Journal of Magnetism and Magnetic Materials ; Volume 322, Issue 22 , November , 2010 , Pages 3607-3613 ; 03048853 (ISSN) Ashouri, M ; Ebrahimi, B ; Shafii, M. B ; Saidi, M. H ; Saidi, M. S ; Sharif University of Technology
    2010
    Abstract
    Magnetic convection heat transfer in a two-dimensional square cavity induced by magnetic field gradient is investigated numerically using a semi-implicit finite volume method. The side walls of the cavity are heated with different temperatures, the top and bottom walls are isolated, and a permanent magnet is located near the bottom wall. Thermal buoyancy-induced flow is neglected due to the nongravity condition on the plane of the cavity. Conditions for the different values of non-dimensional variables in a variety of ferrofluid properties and magnetic field parameters are studied. Based on this numerical analysis, a general correlation for the overall Nusselt number on the side walls is... 

    Approximate method of determining the optimum cross section of microhannel heat sink

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 12 , 2010 , Pages 3448-3458 ; 1738494X (ISSN) Asgari, O ; Saidi, M.H ; Sharif University of Technology
    2010
    Abstract
    Microchannels are at the forefront of today's cooling technologies. They are widely being considered for cooling of electronic devices and in micro heat exchanger systems due to their ease of manufacture. One issue which arises in the use of microchannels is related to the small length scale of the channel or channel cross-section. In this work, the maximum heat transfer and the optimum geometry for a given pressure loss have been calculated for forced convective heat transfer in microchannels of various cross-section having finite volume for laminar flow conditions. Solutions are presented for 10 different channel cross sections: parallel plate channel, circular duct, rectangular channel,... 

    Numerical study of high gradient thermobuoyant flow in a tilted cavity using a novel non-boussinesq algorithm

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 58, Issue 12 , 2010 , Pages 984-1003 ; 10407782 (ISSN) Hosseinizadeh, S. F ; Darbandi, M ; Heidarnataj, M ; Sharif University of Technology
    2010
    Abstract
    We study the natural convection heat transfer in a tilted square cavity with different tilt angles. The cavity is subject to a high gradient temperature resulting in high Rayleigh number flows. The fluid is air and is treated as an ideal gas. The flow is laminar. The fluid properties change with temperature variation using Sutherland's law. Because of imposing large temperature gradients to the two cavity opposite walls, there is substantial density variation in the domain. We use a novel non-Boussinesq algorithm to model the density variation fully. Therefore, the current results are considerably different from those obtained using the classical Boussinesq-based methods, which replace the... 

    A finite-volume ELLAM for non-linear flux convection-diffusion problems

    , Article International Journal of Non-Linear Mechanics ; Volume 44, Issue 2 , 2009 , Pages 129-136 ; 00207462 (ISSN) Fatehi, R ; Taghizadeh Manzari, M ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2009
    Abstract
    In this paper, a modified finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) extended for convection-diffusion problems with a non-linear flux function is introduced. Tracking schemes are discussed using viscous Burgers' equation. It is shown that in order to have smooth results, only the new time level values should be used in tracking process. Then, the proposed method is employed to study immiscible incompressible two-phase flows in porous media. Various one- and two-dimensional test cases involving internal sources and sinks are solved and accuracy of solution and performance of the method are investigated by comparing the results obtained using FVELLAM with those of... 

    Computational simulation of marangoni convection under microgravity condition

    , Article Scientia Iranica ; Volume 16, Issue 6 B , 2009 , Pages 513-524 ; 10263098 (ISSN) Saidi, M. H ; Taeibi Rahni, M ; Asadi, B ; Ahmadi, G ; Sharif University of Technology
    2009
    Abstract
    In this work, the rising of a single bubble in a quiescent liquid under microgravity condition was simulated. In addition to general studies of microgravity effects, the initiation of hydrodynamic convection, solely due to the variations of interface curvature (surface tension force) and thus the generation of shearing forces at the interfaces, was also studied. Then, the variation of surface tension due to the temperature gradient (Marangoni convection), which can initiate the onset of convection even in the absence of buoyancy, was studied. The related unsteady incompressible full Navier-Stokes equations were solved using a finite difference method with a structured staggered grid. The... 

    Interfacial instability of growing drop: experimental study and conceptual analysis

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 347, Issue 1-3 , 2009 , Pages 167-174 ; 09277757 (ISSN) Javadi, A ; Bastani, D ; Kragel, J ; Miller, R ; Sharif University of Technology
    Elsevier  2009
    Abstract
    Capillary pressure experiments were performed at the water/hexane interface including adsorption and mass exchange of hexanol under different conditions. The results from growing drop experiments show that instabilities due to Marangoni convection not only depend on the same parameters as have been reported for quasi-static interfaces, such as direction of mass transfer, distribution coefficient and ratio of diffusion coefficients, but also on the experimental conditions such as dispersed phase flow rate, capillary tip size, size of growing drop and its lifetime. Based on a new flow expansion model for mass transfer, a new approach is presented for data analysis, which includes the various... 

    Experimental determination of natural convection heat transfer coefficient in a vertical flat-plate solar air heater

    , Article Solar Energy ; Volume 82, Issue 10 , 2008 , Pages 903-910 ; 0038092X (ISSN) Hatami, N ; Bahadorinejad, M ; Sharif University of Technology
    2008
    Abstract
    In this study, natural convection heat transfer in a vertical flat-plate solar air heater of 2.5 m height and 1 m width, with one- and two-glass covers was studied experimentally. Totally six cases of airflow (two for air heater with one glass cover and four for air heater with two-glass covers) were considered. These cases included states that air could flow within spaces between absorber plate and glass covers or air was enclosed in such spaces. Absorber plate temperature, back-plate temperature, glass cover temperatures, mass flow rates of air within channels and the solar radiation were measured. The following relations are suggested:. For channels in which air could flow:Nu = 0.7362... 

    A thermoelasticity solution of sandwich structures with functionally graded coating

    , Article Composites Science and Technology ; Volume 67, Issue 6 , 2007 , Pages 1073-1080 ; 02663538 (ISSN) Shodja, H. M ; Haftbaradaran, H ; Asghari, M ; Sharif University of Technology
    2007
    Abstract
    An exact thermoelasticity solution for a two-dimensional thick composite consisting of homogeneous and functionally graded layers is presented. The thermomechanical properties of functionally graded layers are assumed to vary exponentially through the thickness while the Poisson's ratio is taken to be constant. The heat transfer problem is solved under steady state condition accounting for the heat convection. Utilizing the stress function the governing equation reduces to a fourth order inhomogeneous partial differential equation which is solved exactly using Fourier series method. A comparative study is done between two sandwich structures with homogeneous and functionally graded coatings,... 

    Darcy model for the study of the fluid flow and heat transfer around a cylinder embedded in porous media

    , Article International Journal for Computational Methods in Engineering Science and Mechanics ; Volume 7, Issue 5 , 2006 , Pages 323-329 ; 15502287 (ISSN) Layeghi, M ; Nouri Borujerdi, A ; Sharif University of Technology
    Taylor and Francis Inc  2006
    Abstract
    Steady-state convective heat transfer around a circular cylinder embedded in porous media is studied in the range of low and moderate Peclet numbers less than 40. The cylinder is at constant temperature and the Darcy model is used for the analysis of fluid flow and heat transfer in porous media. The governing equations are discretised using finite volume approach based on staggered grids. The powerlaw scheme is used in the numerical solution and a SIMPLE-like algorithm is developed and used in the solution process. It is found that the numerical algorithm is sufficiently efficient in the range of Peclet numbers less than 40. Parametric studies are done for better understanding of the porous... 

    Mass transfer during drop formation on the nozzle: New flow expansion model

    , Article AIChE Journal ; Volume 52, Issue 3 , 2006 , Pages 895-910 ; 00011541 (ISSN) Javadi, A ; Bastani, D ; Taeibi Rahni, M ; Sharif University of Technology
    2006
    Abstract
    An attempt was made to introduce a new approach for evaluating mass transfer during drop formation via definition of a parameter related to the extent of the convective mixing within the growing drop. For this purpose it was assumed that the entrance of the dispersed flow into the growing drop from the nozzle is analogous to the entrance of the flow from a smaller channel to a larger one. This transfer mechanism has been dubbed the "flow expansion." A global time-dependent Reynolds number of growing drop (Regd) was defined based on the equivalent diameter of growing drop as a length scale and also on a velocity scale, which is obtained using this flow expansion assumption. The results show... 

    Improved advection algorithm of computational modeling of free surface flow using structured grids

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 195, Issue 7-8 , 2006 , Pages 775-795 ; 00457825 (ISSN) Babaei, R ; Abdollahi, J ; Homayonifar, P ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    In the present study a finite difference method has been developed to model the transient fluid flow and heat transfer. A single fluid has been selected for modeling of mold filling and The SOLA-VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. The model was then evaluated with the experimental methods. Refereeing to the experimental and simulation results a good consistency and the accuracy of the suggested model are confirmed. © 2005 Published by Elsevier B.V  

    The step effect and particle removal from an enclosure

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Hendijanifard, M ; Saidi, M. H ; Taeibi Rahni, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    This paper reports the results of a study of the transient removal of contaminant particle from enclosures containing an obstacle. We study specially a phenomena occur sometimes called the step effect. This phenomenon may occur if the size of the obstacle is small enough in comparison with the length or height of the enclosure. These results are the basic instruments for finding a model for contaminant particle removal from an enclosure containing an obstacle. A numerical CFD code is developed and validated with different cases, and then proper two- and three-dimensional cases are modeled. The size of the obstacle affect the order of magnitude of the convection-diffusion terms in the... 

    A parametric study on radiant floor heating system performance

    , Article Renewable Energy ; Volume 31, Issue 10 , 2006 , Pages 1617-1626 ; 09601481 (ISSN) Sattari, S ; Farhanieh, B ; Sharif University of Technology
    2006
    Abstract
    Efficient radiant heating systems are promising technologies for energy saving in commercial and building sectors together with improving occupant thermal comfort. However, the thermal performance of radiant systems in buildings has not been fully understood and accounted for in currently available building energy simulation software. In this paper, the effects of design parameters on performance of a typical radiant floor heating system have been studied using finite element method. A radiant heating system includes a number of pipes filled with hot water. Therefore, several design parameters such as pipe diameter, type (material), number, thickness and cover of system are affected on the... 

    Analytical solution of fin/slab heat transfer and property distribution, using Adomian decomposition method

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 7 , 2006 , Pages 794-800 ; 11092769 (ISSN) Najafi, M ; Ramezanizadeh, M ; Taeibi Rahni, M ; Saidi, M. H ; Sharif University of Technology
    2006
    Abstract
    Adomian decomposition method has been applied to evaluate the conduction-convection heat transfer through a straight fin, property distribution due to convection-diffusion, and conduction heat transfer through a slab with temperature dependent thermal conductivity. The Adomian decomposition method (ADM), provides the closed form solution of the non-linear problems without applying any non-realistic simplifications and/or approximations. The obtained analytical solutions are compared with exact and numerical solutions, using finite volume method. It is shown that the numerical simulation has some limitations and may not always produce correct results. However, the Adomian decomposition method... 

    A compressible flow solver for high Thermobuoyant flow fields

    , Article 37th AIAA Thermophysics Conference 2004, Portland, OR, 28 June 2004 through 1 July 2004 ; 2004 ; 9781624100352 (ISBN) Darbandi, M ; Schneider, G. E ; Hosseinizadeh, S. F ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2004
    Abstract
    The use of classical Bossiness approximation is a straightforward strategy to take into account the buoyancy effect in incompressible solvers. This strategy is highly effective if the density variation is low. However, ignoring the importance of density variation in high thermo buoyant flows can cause considerable deviation in predicting the correct fluid flow behavior and heat transfer phenomenon. Indeed, there are many technological and environmental problems where the Bossiness approximation is not valid. In this study, an incompressible algorithm is suitably extended in order to solve compressible flow problems with natural-convection heat transfer. In this regard, the density field is... 

    Practical prediction of supersonic viscous flows over complex configurations using personal computers

    , Article Journal of Spacecraft and Rockets ; Volume 38, Issue 5 , 2001 , Pages 795-798 ; 00224650 (ISSN) Esfahanian, V ; Azimi, A ; Hejranfar, K ; Sharif University of Technology
    2001

    Mixed-convection flow of Al2O3-H2O nanofluid in a channel partially filled with porous metal foam: Experimental and numerical study

    , Article Experimental Thermal and Fluid Science ; Vol. 53 , February , 2014 , pp. 49-56 ; ISSN: 08941777 Hajipour, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    Mixed-convection flow of nanofluids inside a vertical rectangular channel partially filled with open-cell metal foam and subject to a constant wall-heat flux was investigated experimentally and numerically. Al2O3-water nanofluids with different concentrations were prepared and their stability was examined using UV-Vis spectroscopy. Dynamic light scattering method was used to determine particle size distribution of the nanofluid feedstock. The outlet temperature and pressure drop were measured for different nanofluid flow rates (i.e., Reynolds number values). In the numerical section, a two-dimensional volume-averaged form of the governing equations was used. The velocity and temperature... 

    Effects of preheating temperature and cooling rate on two-step residual stress in thermal barrier coatings considering real roughness and porosity effect

    , Article Ceramics International ; Vol. 40, Issue. 10 , December , 2014 , pp. 15925-15940 ; ISSN: 02728842 Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    Abstract
    In this research, a finite element model was developed in order to simulate the two-step residual stress distribution of a thermal barrier coating system, considered to be used in diesel engine cylinder head, with a real roughness and real porosity. Two steps including the bond coat and the top coat deposition processes were taken into account. The real geometry of coating layers, including the roughness and the porosity, was also considered based on a scanning electron microscopy image. Then, effects of the convective heat transfer coefficient and initial substrate and substrate/bond coat preheating temperatures on the residual stress were studied. Obtained results illustrate that the... 

    Gaseous slip flow forced convection in microducts of arbitrary but constant cross section

    , Article Nanoscale and Microscale Thermophysical Engineering ; Vol. 18, issue. 4 , 2014 , p. 354-372 Baghani, M ; Sadeghi, A ; Sharif University of Technology
    Abstract
    This is a theoretical study that extends a classical method of treating the convection heat transfer in complex geometries to gaseous slip flow forced convection in microchannels with H1 thermal boundary condition. Through this line, the momentum and energy equations in cylindrical coordinates are made dimensionless. Afterward, solutions are presented that exactly satisfy the dimensionless differential equations along with the symmetry condition and finiteness of the flow parameter at the origin. The first-order slip boundary conditions are then applied to the solution utilizing the least squares matching method. Though the method is general enough to be applied to almost any arbitrary cross...