Loading...
Search for: hot-pressing
0.008 seconds
Total 36 records

    Hot deformation behavior of Fe-29Ni-17Co alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 23, Issue 11 , 2013 , Pages 3271-3279 ; 10036326 (ISSN) Yazdani, M ; Abbasi, S. M ; Taheri, A. K ; Momeni, A ; Sharif University of Technology
    2013
    Abstract
    Hot compression tests were carried out on a Fe-29Ni-17Co alloy in the temperature range of 900 °C to 1200 °C and at strain rates of 0.001-1 s-1. Dynamic recrystallization was found responsible for flow softening during hot compression. The flow behavior was successfully analyzed by the hyperbolic sine equation and the corresponding material constants A, n and α were determined. The value of apparent activation energy was determined as 423 kJ/mol. The peak and steady state strains showed simple power-law dependence on the Zener-Hollomon parameter. The dynamic recrystallization kinetics was analyzed using Avrami equation and the corresponding exponent was determined to be about 2.7. This... 

    On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy

    , Article Journal of Alloys and Compounds ; Volume 564 , 2013 , Pages 13-19 ; 09258388 (ISSN) Dehghan, H ; Abbasi, S. M ; Momeni, A ; Karimi Taheri, A ; Sharif University of Technology
    2013
    Abstract
    The hot working behavior of A286 was studied using hot compression tests over temperature range of 950-1100 °C and at strain rates of 0.001-1 s -1. The flow curves of the material over the studied temperatures and strain rates were typical of dynamic recrystallization. However, some points reflected a change in the mechanism of softening with the change of strain rate. The relation between flow stress, deformation temperature and strain rate was examined via power-law, hyperbolic sine and exponential constitutive equations and the hyperbolic sine function was found more appropriate. The peak strain increased with strain rate up to 0.01 s-1 and then unexpectedly decreased at higher strain... 

    Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles

    , Article Materials Science and Engineering A ; Volume 568 , 2013 , Pages 33-39 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Hesari, F. A ; Yoon, E. Y ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Nanostructured Cu and Cu-2. vol% SiC nanocomposite were produced by high energy mechanical milling and hot pressing technique. Microstructure development during fabrication process was investigated by X-ray diffraction, scanning electron microscope, scanning transmission electron microscope, and electron backscatter diffraction techniques. The results showed that the microstructure of copper and copper-based nanoco mposite composed of a mixture of equiaxed nanograins with bimodal and non-random misorientation distribution. The presence of SiC nanoparticles refined the grain structure of the copper matrix while the fraction of low angle grain boundaries was increased. Evaluation of mechanical... 

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites

    , Article Materials and Design ; Volume 52 , 2013 , Pages 881-887 ; 02641275 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6. vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4. vol%; then they... 

    Disabling of nanoparticle effects at increased temperature in nanocomposite solders

    , Article Journal of Electronic Materials ; Volume 41, Issue 7 , 2012 , Pages 1907-1914 ; 03615235 (ISSN) Mokhtari, O ; Roshanghias, A ; Ashayer, R ; Kotadia, H. R ; Khomamizadeh, F ; Kokabi, A. H ; Clode, M. P ; Miodownik, M ; Mannan, S. H ; Sharif University of Technology
    2012
    Abstract
    The use of nanoparticles to control grain size and mechanical properties of solder alloys at high homologous temperature is explored. It is found that silica nanoparticles in the 100 nm range coated with 2 nm to 3 nm of gold can be dispersed within solders during the normal reflow soldering process, and that these particles are effective in hardening the solder and restricting dynamic grain growth during compression testing at low homologous temperature. As the homologous temperature increases towards 0.75, the effects of the nanoparticles on both mechanical properties and dynamical grain growth reduce, and by homologous temperatures of 0.86 the effects have completely disappeared. This... 

    High performance Dyneema® fiber laminate for impact resistance/macro structural composites

    , Article Journal of Thermoplastic Composite Materials ; Volume 25, Issue 4 , 2012 , Pages 403-414 ; 08927057 (ISSN) Karbalaie, M ; Yazdanirad, M ; Mirhabibi, A ; Sharif University of Technology
    2012
    Abstract
    UHMWPE composite materials are increasingly used in armors design due to their high strength-to-weight ratios and energy absorption capacities. In this study the effect of production parameters upon the terminal ballistic properties of UHMWPE composite were examined under different conditionings. The composite armor plate laminates were produced by hot pressing with three different pressing times from 10-30 minutes and the laminates conditioned at +115, +125, and +135°C. The molding temperature of SK66 fiber composite has the main direct effect on the ballistic absorption energy, so the relation of molding temperature with the adhesive bonding force between layers, the thickness of the... 

    Hot deformation behavior of hot extruded Al-6Mg alloy

    , Article Materials Science and Engineering A ; Volume 535 , February , 2012 , Pages 216-221 ; 09215093 (ISSN) Mostafaei, M. A ; Kazeminezhad, M ; Sharif University of Technology
    Abstract
    The behavior of hot extruded Al-6Mg during hot deformation has been studied using hot compression test. The tests were performed at temperatures of 350, 450, and 550°C and strain rates of 0.001, 0.1, and 1s -1. Due to the effects of friction and adiabatic heating generated during compression, the attained true stress-true strain curves have been corrected. After correction of friction effect, the virtual work hardening has been removed from stress-strain curves. The flow stress increases and reaches a steady state after correction of adiabatic heating effect. Corrected curves and microstructural examinations exhibit the occurrence of dynamic recovery during hot compression of the alloy. The... 

    Hot workability of cast and wrought Ni–42Cu alloy through hot tensile and compression tests

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 26, Issue 6 , 2016 , Pages 1589-1597 ; 10036326 (ISSN) Arjmand, M ; Abbasi, S. M ; Karimi Taheri, A ; Momeni, A ; Sharif University of Technology
    Nonferrous Metals Society of China 
    Abstract
    In order to analyze the flow behavior and workability of Ni–42Cu in cast and wrought conditions, hot deformation tests were performed at temperatures and strain rates within the ranges of 900–1150 °C and 0.001–1 s−1, respectively. Tensile tests showed a “hot ductility trough” at 950 °C for both alloys. The drop in hot ductility was more considerable in the cast alloy because of the sluggish dynamic recrystallization. The hot ductility drop and grain boundary cracking, particularly in the cast alloy, were attributed to the segregation of detrimental atoms to the boundaries. It was shown that the hot ductility of the wrought alloy could be improved with increasing strain rate. It was... 

    Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes

    , Article Materials Science and Engineering A ; Volume 572 , 2013 , Pages 83-90 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical... 

    Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites

    , Article Nanoscale ; Volume 9, Issue 35 , 2017 , Pages 12779-12820 ; 20403364 (ISSN) Azarniya, A ; Sovizi, S ; Azarniya, A ; Rahmani Taji Boyuk, M. R ; Varol, T ; Nithyadharseni, P ; Madaah Hosseini, H. R ; Ramakrishna, S ; Reddy, M. V ; Sharif University of Technology
    Abstract
    Recently, a wide variety of research works have focused on carbon nanotube (CNT)-ceramic matrix nanocomposites. In many cases, these novel materials are produced through conventional powder metallurgy methods including hot pressing, conventional sintering, and hot isostatic pressing. However, spark plasma sintering (SPS) as a novel and efficient consolidation technique is exploited for the full densification of high-temperature ceramic systems. In these binary nanocomposites, CNTs are added to ceramic matrices to noticeably modify their inferior properties and SPS is employed to produce fully dense compacts. In this review, a broad overview of these systems is provided and the potential... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; 2018 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; Volume 54, Issue 5 , 2019 , Pages 4259-4276 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    Microstructural evolution of Al-20Si-5Fe alloy during rapid solidification and hot consolidation

    , Article Rare Metals ; Volume 28, Issue 6 , 2009 , Pages 639-645 ; 10010521 (ISSN) Rajabi, M ; Vahidi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    Abstract
    Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400°C/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 105 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 107 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural... 

    Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    , Article Materials Science and Engineering A ; Volume 492, Issue 1-2 , 2008 , Pages 443-449 ; 09215093 (ISSN) Rajabi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 °C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing... 

    Synthesis and characterization of Al-SiC nanocomposites produced by mechanical milling and sintering

    , Article Advanced Composite Materials ; Volume 20, Issue 1 , 2011 , Pages 13-27 ; 09243046 (ISSN) Kamrani, S ; Razavi Hesabi, Z ; Riedel, R ; Seyed Reihani, S. M ; Sharif University of Technology
    Abstract
    Aluminum powder and various volume fractions of SiC particles with an average diameter of 50 nm were milled by a high-energy planetary ball mill to produce nanocrystalline Al-SiC nanocomposite powders. Double pressing/sintering process was used to consolidate powders to cylindrical specimens. It was shown that a double cycle of cold pressing and sintering can be utilized to obtain high density Al-SiC nanocomposite parts without using a hot-working step. High resolution scanning electron microscopy (HRSEM), X-ray diffraction (XRD) and laser particle size analyzer (PSA) were used to study the morphological and microstructural evolution of nanocomposite powders and bulk samples. The role of... 

    Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys

    , Article Materials Characterization ; Volume 60, Issue 11 , 2009 , Pages 1370-1381 ; 10445803 (ISSN) Rajabi, M ; Vahidi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    2009
    Abstract
    The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al-20Si-5Fe-2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 × 105 K/s and 5 × 107 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 °C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated....