Loading...
Search for: hydrophilicity
0.007 seconds
Total 133 records

    Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology

    , Article Journal of Polymer Research ; Volume 26, Issue 9 , 2019 ; 10229760 (ISSN) Ganj, M ; Asadollahi, M ; Mousavi, S. A ; Bastani, D ; Aghaeifard, F ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this research, polysulfone (PSf) ultrafiltration (UF) membranes were prepared by a phase inversion method. Surface modification of the PSf membranes was carried out via grafting of acrylic acid as a hydrophilic monomer by free radical graft polymerization initiated by redox reaction. A central composite design (CCD) of response surface methodology (RSM) was applied to design the experiments. The process variables were acrylic acid concentration (CAA), redox system contact time (T1), and acrylic acid polymerization time (T2), while the contact angle (CA), pure water flux (PWF), and flux recovery ratio (FRR) were considered as the responses. Analysis of variance (ANOVA) demonstrated that... 

    Revealing electrical stresses acting on the surface of protoplast cells under electric field

    , Article European Journal of Mechanics, B/Fluids ; Volume 76 , 2019 , Pages 292-302 ; 09977546 (ISSN) Dastani, K ; Moghimi Zand, M ; Hadi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    When cells exposed to an electric field, localized changes in the distribution of the electric field will be induced and these changes in turn lead to electrical stresses on cell surface. The electrical stresses play a key role in the cell membrane structural changes which leads to important phenomena like hydrophilic pores formation on the cell membrane resulting in the cell permeability. In this work, protoplast cell interaction with direct current (DC) electric field is investigated. The electrical stresses acted on the cell membrane in the presence of electric field are investigated numerically by a modified finite difference method, fast Immersed Interface Method (IIM). Exact solution... 

    Improvement of performance and fouling resistance of polyamide reverse osmosis membranes using acrylamide and TiO2 nanoparticles under UV irradiation for water desalination

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 11 , 2020 Asadollahi, M ; Bastani, D ; Mousavi, S. A ; Heydari, H ; Vaghar Mousavi, D ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    The purpose of this research is to explain the surface modification of fabricated polyamide reverse osmosis (RO) membranes using UV-initiated graft polymerization at different irradiation times (15, 30, 60, and 90 s) and various acrylamide concentrations (10, 20, and 30 g L−1). Also, coating of membranes surface with various concentrations of TiO2 nanoparticles (10, 20, 30, and 50 ppm) followed by the same UV irradiation times was investigated. After that, the membranes modification was done by grafting of acrylamide blended with TiO2 nanoparticles via UV irradiation. The characterization of membranes surface properties and their performance were systematically carried out. The results... 

    A pH-sensitive carrier based-on modified hollow mesoporous carbon nanospheres with calcium-latched gate for drug delivery

    , Article Materials Science and Engineering C ; Volume 109 , 2020 Asgari, S ; Pourjavadi, A ; Hosseini, S. H ; Kadkhodazadeh, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A novel nanocarrier based-on hollow mesoporous carbon nanospheres (HMCNs) with primary amines on its surface, a large cavity, and good hydrophilicity was synthesized by a hydrothermal reaction. The primary amine functionalities on the mesoporous carbon were used as the initiation sites for growing poly (epichlorohydrin) (PCH) chains. The chlorine groups in the side chain of PCH were replaced with imidazole as the pendant groups. Calcium chloride (CaCl2) was applied as a capping agent. The coordination bonding was formed between pendant imidazole groups and calcium ions. Doxorubicin (DOX) was selected as a model of hydrophilic anticancer drug and was loaded onto the nanocarrier and released... 

    Effects of surface modified nanosilica on drilling fluid and formation damage

    , Article Journal of Petroleum Science and Engineering ; Volume 194 , 2020 Hajiabadi, S. H ; Bedrikovetsky, P ; Mahani, H ; Khoshsima, A ; Aghaei, H ; Kalateh Aghamohammadi, M ; Habibi, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Despite the fact that hydrophobic nanosilica can improve the stability of water/oil emulsion, there exist controversies pertaining to its influence on oil-based drilling fluid rheological behavior and the subsequent formation damage. The present study addresses the above using a surface modified nanosilica, where the particles were functionalized with different silane-based groups to alter their hydrophilicity: 3-glycidoxypropyl-triethoxy silane (GPTS) and combined GPTS and propyl silane (PGPTS). The NPs were characterized through FTIR analysis, particle size, and zeta-potential measurements followed by flow behavior experiments, core-scale mud flow tests, Computed Tomography (CT) scanning... 

    Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation

    , Article New Journal of Chemistry ; Volume 44, Issue 17 , 2020 , Pages 6947-6957 Paryab, A ; Madaah Hosseini, H. R ; Abedini, F ; Dabbagh, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    In the present study, bubble-driven magnesium-based micromotors were fabricated through a shading method, and the potential of magnetic guidance of magnesium-based Janus micro/nanomotors through functionalization with superparamagnetic iron oxide nanoparticles (SPIONs) was investigated for the first time. SPIONs had physical electrostatic attraction with the positively charged magnesium spheres due to negative charges on their surfaces. It was also found that upon applying a field gradient, the micromotors’ velocity increased by 13% unlike other magnetically navigated spherical magnesium-based micromotors which only show a change in direction. In this work the cytotoxicity of the moving... 

    Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs

    , Article Journal of Drug Delivery Science and Technology ; Volume 56 , 2020 Pourjavadi, A ; Asgari, S ; Hosseini, S. H ; Sharif University of Technology
    Editions de Sante  2020
    Abstract
    In this work, a novel carrier based-on modified graphene oxide was designed for co-delivery of hydrophobic and hydrophilic anticancer drugs (curcumin (Cur) and doxorubicin (DOX) as the model of drugs). The hydroxyl groups at the edges of graphene oxide (GO) sheets were used as the initiation sites for growing poly(epichlorohydrin) (PCH) chains. Then, hyperbranched polyglycerol (HPG) was grafted on the hydroxyl end groups of PCH (PCH-g-HPG). Pendant chlorines in the main chain of GO-PCH-g-HPG were replaced with hydrazine. The modification of GO sheets with oxygen-rich polymers increased water solubility of graphene oxide. Doxorubicin was loaded onto the nanocarrier by covalent bonding with... 

    Anti-reflection and self-cleaning meso-porous TiO2 coatings as solar systems protective layer: Investigation of effect of porosity and roughness

    , Article Optical Materials ; Volume 107 , 2020 Sharifi Rad, A ; Afshar, A ; Azadeh, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Anti-reflection and self-cleaning coatings on the glass substrate are used to improve the performance of solar systems. TiO2 are one of the most used semiconductors for this application. In this research meso-porous TiO2 coatings (that synthesized by the sol-gel process) with the various extent of porosity (using different concentrations of Pluronic F127, as pore-forming agent) have been investigated. The coating's thickness and porosity and anti-reflective properties were studied by FE-SEM and UV/VIS spectrometer (transmission spectra test), respectively. It was found that the use of F127 leads to the formation of pores smaller than 30 nm and increases the surface roughness from 1.5 (for... 

    Effect of physico-chemical properties of nanoparticles on their intracellular uptake

    , Article International Journal of Molecular Sciences ; Volume 21, Issue 21 , 2020 , Pages 1-20 Sabourian, P ; Yazdani, G ; Ashraf, S. S ; Frounchi, M ; Mashayekhan, S ; Kiani, S ; Kakkar, A ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Cellular internalization of inorganic, lipidic and polymeric nanoparticles is of great significance in the quest to develop effective formulations for the treatment of high morbidity rate diseases. Understanding nanoparticle–cell interactions plays a key role in therapeutic interventions, and it continues to be a topic of great interest to both chemists and biologists. The mechanistic evaluation of cellular uptake is quite complex and is continuously being aided by the design of nanocarriers with desired physico-chemical properties. The progress in biomedicine, including enhancing the rate of uptake by the cells, is being made through the development of structure–property relationships in... 

    CaTiO3/α-TCP coatings on CP-Ti prepared via electrospinning and pulsed laser treatment for in-vitro bone tissue engineering

    , Article Surface and Coatings Technology ; Volume 401 , 2020 Yadi, M ; Esfahani, H ; Sheikhi, M ; Mohammadi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the in-vitro bone regeneration ability of commercial pure titanium (CP-Ti) surface modified via electrospun polyvinylidene/hydroxyapatite (PVP/HA) masking and subsequent Nd-YAG pulsed laser treatment was investigated. The ratio of HA to PVP played a significant role in achieving a perfect homogenous mask on the CP-Ti. In the laser treatment process, the parameter of area scanning speed (ASS) had an important influence on the final surface morphology. A favorable range was defined for this parameter where these two conditions were satisfied: no PVP remaining and no severe substrate melting. Within a favorable range of ASS, as decreasing ASS exchanged the surface structure from... 

    The effect of water vapor on the performance of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes in CO2/CH4 separation applications

    , Article Journal of Membrane Science ; Volume 285, Issue 1-2 , 2006 , Pages 265-271 ; 03767388 (ISSN) Pourafshari Chenar, M ; Soltanieh, M ; Matsuura, T ; Tabe Mohammadi, A ; Khulbe, K. C ; Sharif University of Technology
    2006
    Abstract
    The effects of water vapor on CO2/CH4 separation using commercially available poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and Cardo-type polyimide hollow fiber membranes were investigated. Pure methane and CO2/CH4 mixture permeation experiments were carried out in the absence and presence of water vapor (60% RH). Pure methane permeance decreased in the presence of water vapor for both membrane types. The decrease was 28% for hydrophilic Cardo-type polyimide and 6% for hydrophobic PPO membranes. The decline in the permeance was also observed for CO2/CH4 mixture separation through both membranes. However, selectivities of the two membranes were affected differently by water vapor. The... 

    Molecular engineering and morphology of polyurethane elastomers containing various molecular weight of macrodiol

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 264 , 2021 ; 09215107 (ISSN) Naheed, S ; Zuber, M ; Barikani, M ; Salman, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A series of polyurethane elastomers (PUEs) based on 4,4′-cyclohexamethylene diisocyanate (H12MDI)/1,2-ethanediol as hard segment with the soft segments having different molecular weights of polycaprolactone diols, were effectively polymerized by two step technique. The structural characterization was performed by FT-IR spectroscopy. The X-ray diffraction (XRD) technique was used to study the crystallinity and hydrophilicity of the prepared polymer films. It was found that crystallinity and hydrophilicity increased with increasing the chain length of soft segments. The effect of molecular weight of polyols on the contact angle, water absorption (%) and swelling behavior of the synthesized... 

    Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 72, Issue 6 , 2005 ; 15393755 (ISSN) Radja, N.H ; Farzami, R. R ; Ejtehadi, M. R ; Sharif University of Technology
    2005
    Abstract
    We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors (structures) as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of... 

    2D MXene nanocomposites: electrochemical and biomedical applications

    , Article Environmental Science: Nano ; Volume 9, Issue 11 , 2022 , Pages 4038-4068 ; 20518153 (ISSN) Ramezani Farani, M ; Nourmohammadi Khiarak, B ; Tao, R ; Wang, Z ; Ahmadi, S ; Hassanpour, M ; Rabiee, M ; Saeb, M. R ; Lima, E. C ; Rabiee, N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic conductivity, stability, and exclusive physiochemical performances make them promising materials for electrochemical and biomedical applications, including CO2 reduction, H2 evolution, energy conversion and storage, supercapacitors, stimuli-responsive drug delivery... 

    Developing tough terpolymer hydrogel with outstanding swelling ability by hydrophobic association cross-linking

    , Article Polymer ; Volume 254 , 2022 ; 00323861 (ISSN) Rahmani, P ; Shojaei, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hydrogels with remarkable hydrophilicity and tunable toughness are appealing materials to serve as superabsorbent polymers. However, chemically cross-linked hydrogels often suffer from low toughness regardless of their considerable swelling, restricting their widespread applications. In comparison, the network of physically cross-linked hydrogels can be regulated to meet both a high swelling ratio and considerable toughness. Here, we develop superabsorbent and tough hydrophobic associated hydrogels using terpolymerization of poly acrylic acid (PAA), polyacrylamide (PAM), and lauryl methacrylate (LMA) within the micelles formed by sodium dodecyl sulfate (SDS) surfactant. To this end, various... 

    Selective fabrication of robust and multifunctional super nonwetting surfaces by diverse modifications of zirconia-ceria nanocomposites

    , Article Langmuir ; Volume 38, Issue 30 , 2022 , Pages 9195-9209 ; 07437463 (ISSN) Esmaeilzadeh, P ; Zandi, A ; Ghazanfari, M. H ; Khezrnejad, A ; Fatemi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The creation of surfaces with various super nonwetting properties is an ongoing challenge. We report diverse modifications of novel synthesized zirconia-ceria nanocomposites by different low surface energy agents to fabricate nanofluids capable of regulating surface wettability of mineral substrates to achieve selective superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic conditions. Surfaces treated with these nanofluids offer self-cleaning properties and effortless rolling-off behavior with sliding angles ≤7° for several liquids with surface tensions between 26 and 72.1 mN/m. The superamphiphobic nanofluid coating imparts nonstick properties to a solid surface whereby... 

    Reduction of formation damage in horizontal wellbores by application of nano-enhanced drilling fluids: Experimental and modeling study

    , Article Journal of Petroleum Science and Engineering ; Volume 210 , 2022 ; 09204105 (ISSN) Shojaei, N ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    One of the basic challenges during drilling horizontal wellbores is the damage induced by invasion of mud filtrate into the formation. Addition of nanoparticles to drilling fluids has been recognized as a measure of control and reduction of filtrate invasion, which is the primary mechanism of the aforementioned formation damage. Despite notable advances in composing Nano-enhanced drilling fluids, the role of nanoparticle hydrophobicity on performance of the fluids has not been well studied. This study is based on a combined experimental-numerical methodology. In the experimental section, a procedure to find the optimum composition of Nano-enhanced water-based samples, containing... 

    Tuning the wetting properties of SiO2-based nanofluids to create durable surfaces with special wettability for self-cleaning, anti-fouling, and oil-water separation

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 23 , 2022 , Pages 8005-8019 ; 08885885 (ISSN) Esmaeilzadeh, P ; Ghazanfari, M. H ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Surfaces with special wettability have aroused lots of attention due to their broad applications in many fields. In this work, we systematically report selective and various fabrications of nanofluids based on readily available materials such as SiO2 nanoparticles and polydimethylsiloxane to create superhydrophobic, superoleophobic, superhydrophilic/superoleophobic, and underwater superoleophobic coatings. The efficiency of prepared coatings is investigated on mineral rock plates as porous substrates via the straightforward and cost-effective solution-immersion technique. The static water contact angle of 170°, effortless bouncing of water droplets, and self-cleaning property with a near... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Improvement of polymer flooding using in-situ releasing of smart nano-scale coated polymer particles in porous media

    , Article Energy Exploration and Exploitation ; Volume 30, Issue 6 , 2012 , Pages 915-940 ; 01445987 (ISSN) Ashrafizadeh, M ; Ramazani, S. A. A ; Sadeghnejad, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this paper is modeling and simulation of in-situ releasing of smart nano-sized core-shell particles at the water-oil interface during polymer flooding. During the polymer flooding process, when these nano-particles reach the water-oil interface, migrate to the oil phase and the hydrophobic layer of them dissolves in this phase. After dissolution of this protective nano-sized layer, the hydrophilic core containing a water-soluble ultra high molecular weight polymer diffuses back into the water phase and with dissolving in this phase, dramatically increases viscosity of flooding water in the neighborhood of the water-oil interface. In this study, two different...