Loading...
Search for: hydrophobicity
0.007 seconds
Total 177 records

    Droplet condensation on chemically homogeneous and heterogeneous surfaces

    , Article Journal of Applied Physics ; Volume 120, Issue 12 , 2016 ; 00218979 (ISSN) Ashrafi, A ; Moosavi, A ; Sharif University of Technology
    American Institute of Physics Inc  2016
    Abstract
    Nucleation and growth of condensing droplets on horizontal surfaces are investigated via a 2-D double distribution function thermal lattice Boltzmann method. First, condensation on completely uniform surface is investigated and different mechanisms which cause dropwise and filmwise condensation are studied. The results reveal the presence of cooled vapor layer instability in the condensation on completely smooth surfaces. In the second step, condensation on chemically heterogeneous surfaces is investigated. Moreover, the effect of non-uniformity in the surface temperature is also studied. The results indicate that the vapor layer instability and the nucleation start from the heterogeneities.... 

    Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    , Article Journal of Nanoparticle Research ; Volume 18, Issue 9 , 2016 ; 13880764 (ISSN) Behzadi, A ; Mohammadi, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at... 

    Vacuum enhanced membrane distillation for trace contaminant removal of heavy metals from water by electrospun PVDF/TiO2 hybrid membranes

    , Article Korean Journal of Chemical Engineering ; Volume 33, Issue 7 , 2016 , Pages 2160-2168 ; 02561115 (ISSN) Moradi, R ; Monfared, S. M ; Amini, Y ; Dastbaz, A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Electrospun hybrid membranes were synthesized using electrospinning of Poly (vinylidenefluoride) - titanium tetraisopropoxide (PVDF-TTIP) sol. Asymmetric post-treatment of membrane conducted for deprotonation of titanate and making hydrophilic/hydrophobic dual characteristics. The membranes were characterized by various methods such as wettability, scanning electron microscopy, infrared spectroscopy, X-ray diffraction and liquid entry pressure tests. For evaluating the separation performance, these membranes were applied in the VMD process to treat water heavy metal contaminants. The effects of operating parameters such as flow rate, temperature and membrane properties as porosity, on... 

    Electroosmotic flow in hydrophobic microchannels of general cross section

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 138, Issue 3 , 2016 ; 00982202 (ISSN) Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2016
    Abstract
    Adopting the Navier slip conditions, we analyze the fully developed electroosmotic flow in hydrophobic microducts of general cross section under the Debye-Hückel approximation. The method of analysis includes series solutions which their coefficients are obtained by applying the wall boundary conditions using the least-squares matching method. Although the procedure is general enough to be applied to almost any arbitrary cross section, eight microgeometries including trapezoidal, double-trapezoidal, isosceles triangular, rhombic, elliptical, semi-elliptical, rectangular, and isotropically etched profiles are selected for presentation. We find that the flow rate is a linear increasing... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    Synthesis, Characterization and Hydrophobicity of Teflon Coated Tungsten Nanostructure Thin Films

    , M.Sc. Thesis Sharif University of Technology Bayat, Amir (Author) ; Moshfegh, Ali Reza (Supervisor) ; Azimirad, Rouhollah (Supervisor)
    Abstract
    Hydrophobic and superhydrophobic surfaces find many applications in different fields of science. The aerospace industry is one such field that can take the advantage of superhydrophobicity for anti-icing coatings. In order to make hydrophobic and superhydrophobic surfaces on hydrophilic materials, two-step process is usually need, at first, making a rough surface and then modifying it with hydrophobic coatings with low surface free energy. In this research, we have used glancing angle deposition (GLAD) RF sputtering technique to fabricate Teflon coated tungsten on glass substrate for obtaining hydrophobic surface. GLAD approach is a method to grow structures such as nanorods and zigzag... 

    Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

    , Article Biomedical Microdevices ; Volume 19, Issue 4 , 2017 ; 13872176 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Kiyoumarsioskouei, A ; Trung Nguyen, N ; Sharif University of Technology
    Abstract
    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung... 

    A single–step synthesized supehydrophobic melamine formaldehyde foam for trace determination of volatile organic pollutants

    , Article Journal of Chromatography A ; Volume 1525 , 2017 , Pages 10-16 ; 00219673 (ISSN) Bagheri, H ; Zeinali, S ; Baktash, M. Y ; Sharif University of Technology
    Abstract
    Superhydrophobic materials have attracted many attentions in recent years while their application in sample preparation remained almost intact. In this project, a rough surface of melamine formaldehyde foam was silanized by chemical deposition of trichloromethylsilane to form a highly porous and superhydrophobic material, presumably a suitable medium for extracting non–polar compounds such as benzene and its methyl derivatives. The prepared sorbent was packed in a needle for the headspace needle–trap microextraction of benzene, toluene, ethylbenzene and xylenes (BTEX). Major parameters associated with the extraction/desorption processes were considered for optimization. Under the optimized... 

    Development of a Paper-based Microfluidic Device for Biological Assay

    , M.Sc. Thesis Sharif University of Technology Boodaghi, Miad (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    All the biological diagnostic devices that are introduced to the consumers, must meet WHO criteria. Some of these criteria include being affordable, sensitive and deliverable to the user. In the last twenty years, there have been lots of efforts to use microfluidic devices for biological assay. Due to their expensive price and requirement of complex equipment for their fabrication, polymer-based microfluidic devices have not been able to be used in developing countries. It is to be hoped that introduction of paper for fabrication of microfluidic devices could make microfluidic devices meet WHO criteria. μPADs are divided into well-based and channel-based devices. In the present work, both... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; 2017 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active... 

    Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives

    , Article Microfluidics and Nanofluidics ; Volume 21, Issue 9 , 2017 ; 16134982 (ISSN) Ghasemi, A ; Amiri, H ; Zare, H ; Masroor, M ; Hasanzadeh, A ; Beyzavi, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Advanced nanomaterials such as carbon nanotubes (CNTs) display unprecedented properties such as strength, electrical conductance, thermal stability, and intriguing optical properties. These properties of CNT allow construction of small microfluidic devices leading to miniaturization of analyses previously conducted on a laboratory bench. With dimensions of only millimeters to a few square centimeters, these devices are called lab-on-a-chip (LOC). A LOC device requires a multidisciplinary contribution from different fields and offers automation, portability, and high-throughput screening along with a significant reduction in reagent consumption. Today, CNT can play a vital role in many parts... 

    Calcium chloride adsorption at liquid-liquid interfaces: A molecular dynamics simulation study

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 527 , 2017 , Pages 70-80 ; 09277757 (ISSN) Khiabani, N. P ; Bahramian, A ; Chen, P ; Pourafshary, P ; Goddard, W.A., III ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    We carried out molecular dynamics simulations (MD) to investigate the adsorption of calcium chloride (CaCl2) at n-hexane-water interfaces. We also measured the interfacial tensions (IFT) of the selected systems making use of the pendant-drop method. The histograms of hexane, water, and the ions indicate an electrical double layer (EDL) near the interface. The trend of the EDL indicates that chloride anions intend to adsorb to the interface more intrinsically than calcium cations. The measured interfacial width of the n-hexane-water interfaces decreases with the salt concentration. The average densities of the interfacial and bulk aqueous solutions demonstrate density heterogeneity in the... 

    Silica aerogel coated on metallic wire by phase separation of polystyrene for in–tube solid phase microextraction

    , Article Journal of Chromatography A ; Volume 1500 , 2017 , Pages 69-75 ; 00219673 (ISSN) Baktash, M. Y ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this research, an attempt was made toward synthesizing a sol–gel–based silica aerogel and its subsequent coating on a copper wire by phase separation of polystyrene. Adaption of this new approach enabled us to coat the metallic wire with powder materials. The use of this method for coating, led to the formation of a porous and thick structure of silica aerogel. The coated wire was placed in a needle and used as the sorbent for in–tube solid phase microextraction of chlorobenzenes (CBs). The superhydrophobicity of sorbent on extraction efficiency was investigated by using different ratios of tetraethylorthosilicate/methyltrimethoxysilane. The surface coated with the prepared silica aerogel... 

    Nanomechanical properties of MscL α helices: A steered molecular dynamics study

    , Article Channels ; Volume 11, Issue 3 , 2017 , Pages 209-223 ; 19336950 (ISSN) Bavi, N ; Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Hill, A. P ; Martinac, B ; Jamali, Y ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during... 

    Investigation the effect of super hydrophobic titania nanoparticles on the mass transfer performance of single drop liquid-liquid extraction process

    , Article Separation and Purification Technology ; Volume 176 , 2017 , Pages 107-119 ; 13835866 (ISSN) Hatami, A ; Bastani, D ; Najafi, F ; Sharif University of Technology
    Abstract
    Hydrophobic titania nanoparticles were synthesized by a novel in situ sol-gel method and applied in a single drop liquid-liquid extraction column to enhance the overall dispersed-phase mass transfer coefficient (Kod). The chemical system of toluene, acetic acid and water was used, and the direction of solute (acetic acid) mass transfer was from dispersed phase, including: toluene and acetic acid to the continuous phase of water. For such system, much of the mass transfer resistance exists in the dispersed phase, which is nonpolar organic liquid. Hence, modified titania nanoparticles (MTNP's), prepared by sol-gel route, in five different concentrations of 0.001–0.005 wt.% were added in the... 

    Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction

    , Article Energy ; Volume 125 , 2017 , Pages 1-10 ; 03605442 (ISSN) Taghvaei, E ; Moosavi, A ; Nouri Borujerdi, A ; Daeian, M. A ; Vafaeinejad, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    We propose a facile and cost effective method for fabricating superhydrophobic surfaces with significant drag reduction in a wide velocity range. A dual structure superhydrophobic aluminum surface with a hydrophobic Al2O3micro- and nanoparticle coating and also another superhydrophobic surface with a nanoparticle layer coating are fabricated. Then, the resulted drag from each of these surfaces is measured carefully in different velocities and compared with the drag of the as-received aluminum surface. Our results reveal that the surface with the dual structure experiences drag reduction in a wider velocity range compared with the nanoparticle coated sample. Drag reduction of the dual... 

    Improvement of non-aqueous colloidal gas aphron-based drilling fluids properties: role of hydrophobic nanoparticles

    , Article Journal of Natural Gas Science and Engineering ; Volume 42 , 2017 , Pages 1-12 ; 18755100 (ISSN) Hassani, A. H ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Application of the colloidal gas aphrons (CGAs) in minimizing formation damage by plugging pore mechanism is now wildly accepted due to numerous successful field experience. One of the pivotal factors which affects the pore blockage ability of micro-bubbles is their stability. This experimental study tries to investigate the possible synergistic effect of nanoparticles on improving the stability and other properties of non-aqueous CGA drilling fluids, in both bulk and porous media. In particular, two types of hydrophobic nanoparticles including silicon dioxide nanopowder coated with 2 wt% Silane and nanoclay, in presence of a treated version of bentonite (Bentone 34) as a stabilizer and... 

    Utilization of molecular dynamics simulation coupled with experimental assays to optimize biocompatibility of an electrospun PCL/PVA scaffold

    , Article PLoS ONE ; Volume 12, Issue 1 , 2017 ; 19326203 (ISSN) Sarmadi, M ; Shamloo, A ; Mohseni, M ; Sharif University of Technology
    Public Library of Science  2017
    Abstract
    The main focus of this study is to address the possibility of using molecular dynamics (MD) simulation, as a computational framework, coupled with experimental assays, to optimize composite structures of a particular electrospun scaffold. To this aim, first, MD simulations were performed to obtain an initial theoretical insight into the capability of heterogeneous surfaces for protein adsorption. The surfaces were composed of six different blends of PVA (polyvinyl alcohol) and PCL (polycaprolactone) with completely unlike hydrophobicity. Next, MTT assay was performed on the electrospun scaffolds made from the same percentages of polymers as in MD models to gain an understanding of the... 

    A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 897-912 ; 09284931 (ISSN) Tajbakhsh, S ; Hajiali, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites... 

    Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation

    , Article Journal of Membrane Science ; Volume 537 , 2017 , Pages 140-150 ; 03767388 (ISSN) Seyed Shahabadi, S. M ; Rabiee, H ; Seyedi, S. M ; Mokhtare, A ; Brant, J. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this study, superhydrophobic dual layer membranes with highly porous structure were fabricated using electrospinning and electrospraying techniques. Electrospinning method was used to produce the support nanofibrous layer using polyvinylidene fluoride-co-hexafluoropropylene (PH) as the polymer and a mixed solvent system of N,N-Dimetylformamide (DMF) and acetone. Afterwards, hydrophobic, functionalized TiO2 nanoparticles were deposited on the surface of the support layer using the electrospraying technique. TiO2 chemical functionalization and their deposition on the support layer were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The...