Loading...
Search for: immiscibility
0.005 seconds
Total 43 records

    Prediction of Hydraulic Fracturing Technology in Naturally Fractured Rocks, by Considering Immiscible Two-phase Flow

    , Ph.D. Dissertation Sharif University of Technology Ranjbaran, Mohammad (Author) ; Taghikhani, Vahid (Supervisor) ; Ayatollahi, Shahab (Supervisor) ; Shad, Saeed (Supervisor) ; Ranjbaran, Abdolrasul ($item.subfieldsMap.e)
    Abstract
    To have a deeper understanding of Hydraulic fracturing operation, in this study four important parts in this field was developed and simulated. In the first part, continuity and momentum equations for a single phase flow in a propagating penny-shaped fracture inside an impermeable matrix was revisited based on a fixed coordinate system. Its correctness was validated against experimental data and its features were compared with the well-known lubrication theory in analytical form. The new derived continuity equation caused the fracture tip to have a positive and finite pressure while, the conventional model predicted negative infinity for that. In the second part, Finite Volume method was... 

    Core Scale Mechanistic Investigation of the Effect of Gas Composition on Enhanced Oil Recovery Mechanisms during Injection at Different Miscibility Conditions

    , M.Sc. Thesis Sharif University of Technology Shokri Nazarabad, Farshad (Author) ; Fatemi, Mobeen (Supervisor)
    Abstract
    The gas injection is one of the most common methods of increasing recovery from oil reservoirs, especially when a suitable source for gas is available. For example, available sources of carbon dioxide or associated gas produced from the reservoir or adjacent reservoirs. In general, the gas injection may be miscible or immiscible, which is a function of the type and composition of the gas-oil and the reservoir conditions in terms of temperature and pressure. In miscible gas injection, different mechanisms such as molecular diffusion of gas in oil or evaporation of lighter components of oil in gas and condensation of heavier components of gas in the oil phase can be shown. To occur of such... 

    Experimental investigation and evaluation of three-phase relative permeability models

    , Article Journal of Petroleum Science and Engineering ; Vol. 79, issue. 2-Jan , October , 2011 , p. 45-53 ; ISSN: 09204105 Masihi, M ; Javanbakht, L ; Bahaloo Horeh, F ; Rasaei, M. R ; Sharif University of Technology
    Abstract
    Petroleum production often involves simultaneous flow of three immiscible fluids through underground porous rock formation. In this work, we measure two- and three-phase relative permeabilities with which we examine the performance of various 3-phase relative permeability models. The rock-fluid systems used in these measurements are comprised of sandstone samples, oil (n-decane), water (Nacl, 6000. ppm) and gas (nitrogen). The measurements were carried out at 23 ± 1 °C and 5.44 MPa. Two- and three-phase relative permeability measurements were obtained using the steady-state technique. The three-phase experiments were conducted such that the flow rates of brine and gas were increased... 

    A comparison of WAG and SWAG processes: Laboratory and simulation studies

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 35, Issue 23 , 2013 , Pages 2225-2232 ; 15567036 (ISSN) Heidari, P ; Kharrat, R ; Alizadeh, N ; Ghazanfari, M. H ; Sharif University of Technology
    2013
    Abstract
    The use of water-alternating-gas injection can potentially lead to improved oil recovery from the fields; simultaneous water and gas injection is a form of water-alternating-gas injection. However, there is still an incomplete understanding of these processes and the need for comparative work is inevitable. Core flood experiments and compositional simulations of water-alternating-gas and simultaneous water and gas processes are presented. Immiscible, near miscible, and miscible modes of injection are covered. Matching process is done and optimization of design parameters (injection rate, slug size, water-alternating-gas ratio, and injection gas) is performed. Experimental data demonstrate... 

    Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method

    , Article Journal of Petroleum Science and Engineering ; Volume 77, Issue 1 , 2011 , Pages 135-145 ; 09204105 (ISSN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    Abstract
    Relative permeability curves have practical implications in petroleum reservoir simulations. Study of the effects of reservoir wettability, pore shape geometry, and viscosity ratio of flowing fluids on the relative permeabilities is of great importance in reservoir modeling. In this paper, lattice Boltzmann method (LBM) is employed for analyzing the two-fluid flow in rigid porous media. The developed LBM code proved to be a robust numerical tool for analyzing the factors that influence the relative permeabilities of two immiscible fluids flowing through porous media. The numerically derived relative permeability curves demonstrate that in neutrally wet reservoirs, the effect of viscosity... 

    A pore-level screening study on miscible/immiscible displacements in heterogeneous models

    , Article Journal of Petroleum Science and Engineering ; Volume 110 , 2013 , Pages 40-54 ; 09204105 (ISSN) Mohammadi, S ; Hossein Ghazanfari, M ; Masihi, M ; Sharif University of Technology
    Abstract
    A comprehensive understanding of the role of reservoir heterogeneities induced by flow barriers and connate water on sweep efficiency of different EOR scenarios is rarely attended in the available literature. In this work, different miscible/immiscible EOR processes were conducted on various one-quarter five-spot glass micromodels incorporating small-scale flow barriers. Microscopic and macroscopic observations revealed the reduction of sweep efficiency, premature breakthrough of displacing fluids, the severity of fingering at displacement front which leaves a large amount of oil behind the flow barriers untouched, and significant increasing trend of oil recovery after breakthrough in the... 

    An experimental investigation of three-phase flow through water-wet rocks

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 5 , 2010 , Pages 3924-3928 ; 9781617386671 (ISBN) Masihi, M ; Javanbakht, L ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    Petroleum production often involves simultaneous flow of three immiscible fluids through porous rock formations. The objective of this work is to experimentally measure two and three phase relative permeabilities and to evaluate the existing relative permeability prediction models. We used typical Berea sandstone with refined mineral oil, distilled water and nitrogen gas. The measurements were carried out at temperature of 23°C and pressure of 800 psi. Two and three phase relative permeability measurements were obtained using the steady state technique. The three-phase experiments are conducted in the imbibition mode. The flow rates of brine and gas were increased gradually and the oil rate... 

    Neural network prediction model of three-phase fluids flow in heterogeneous porous media using scaling analysis

    , Article Journal of Petroleum Science and Engineering ; Volume 138 , 2016 , Pages 122-137 ; 09204105 (ISSN) Zarringhalam, A ; Alizadeh, M ; Rafiee, J ; Moshirfarahi, M. M ; Sharif University of Technology
    Elsevier 
    Abstract
    Scaling analysis of fluid displacement in porous media is a reliable, fast method to evaluate the displacement performance of different oil production processes under various conditions. This paper presents the scaling studies of multiphase fluid flow through permeable media with a special attention to the three-phase immiscible water alternating gas (WAG) flooding under conditions prevailing in many oil reservoirs. The investigations are performed on a heterogeneous reservoir to study in detail the sensitivity of the displacement process to the scaling groups using various combinations of the process controlling parameters. The procedure of Inspectional analysis (IA) was utilized to... 

    Numerical investigation of two phase flow in micromodel porous media: effects of wettability, heterogeneity, and viscosity

    , Article Canadian Journal of Chemical Engineering ; Volume 95, Issue 6 , 2017 , Pages 1213-1223 ; 00084034 (ISSN) Maaref, S ; Rokhforouz, M. R ; Ayatollahi, S ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    The aim of the present work is to assess the effects of wettability, heterogeneity, and viscosity differences on water-oil displacement process in micromodel porous media through numerical modelling. The two-phase flow was simulated by Cahn-Hilliard phase field method (PFM) using a finite element package. The micromodel was initially saturated with oil (wetting phase) and oil was produced through invasion of the displacing phase into the matrix. The computed oil and water saturations were in good agreement with those obtained by the visual flooding experiment. Using the validated model, sensitivity analysis was performed to investigate the effects of different wettability states,... 

    Minimum miscibility pressure of CO2 and crude oil during CO2 injection in the reservoir

    , Article Journal of Supercritical Fluids ; Volume 127 , 2017 , Pages 121-128 ; 08968446 (ISSN) Lashkarbolooki, M ; Eftekhari, M. J ; Najimi, S ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Recently, carbon dioxide (CO2) flooding into depleted reservoirs regardless of miscible or immiscible displacement is widely investigated not only to improve oil recovery but also to reduce the greenhouse effect of this gas produced by numbers of industries in the globe. In the light of this fact, in the first stage of this investigation, the minimum miscibility pressure (MMP) of CO2 and light crude oil (API° = 35) with low asphaltene content was determined at temperatures of 30, 50 and 80 °C using vanishing interfacial tension (VIT) method. The obtained results demonstrated that the MMP of the studied system is almost linear function of temperature with slope of 0.15 MPa/K. The interesting... 

    Laboratory evaluation of nitrogen injection for enhanced oil recovery: Effects of pressure and induced fractures

    , Article Fuel ; Volume 253 , 2019 , Pages 607-614 ; 00162361 (ISSN) Fahandezhsaadi, M ; Amooie, M. A ; Hemmati Sarapardeh, A ; Ayatollahi, S ; Schaffie, M ; Ranjbar, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Nitrogen has emerged as a suitable alternative to carbon dioxide for injection into hydrocarbon reservoirs worldwide to enhance the recovery of subsurface energy. Nitrogen typically costs less than CO2 and natural gas, and has the added benefit of being widely available and non-corrosive. However, the underlying mechanisms of recovery following N2 injection into fractured reservoirs that make up a large portion of the world's oil and gas reserves are not well understood. Here we present the laboratory results of N2 injection into carbonate rocks acquired from a newly developed oil reservoir in Iran with a huge N2-containing natural gas reservoir nearby. We investigate the effectiveness of N2... 

    Parametric study of droplet formation and characteristics within microfluidic devices - A case study

    , Article International Journal of Applied Mechanics ; Volume 12, Issue 7 , 2020 Salehi, S. S ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    World Scientific  2020
    Abstract
    Droplet-based microfluidics technologies hold great attention in a wide range of applications, including chemical analysis, drug screening, and food industries. This work aimed to describe the effects of different physical properties of the two immiscible phases on droplet formation in a flow-focusing microfluidic device and determining proper flow rates to form a droplet within the desired size range. A numerical model was developed to solve the governing equations of two-phase flow and the results were validated with previous experimental results. The results demonstrate different types of droplet formation regimes from dripping to jetting and different production rates of droplets as a... 

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved  

    Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method

    , Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 Sadeghi, M ; Pak, A ; Sadeghi, H ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2020
    Abstract
    Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller (RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow... 

    Unsaturated thermal consolidation around a heat source

    , Article Computers and Geotechnics ; Volume 134 , 2021 ; 0266352X (ISSN) Cherati, D. Y ; Ghasemi Fare, O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Thermal loadings in saturated (two-phase) clays induce excess pore water pressure due to the difference in the thermal expansion coefficient of the pore volume and the pore water. The gradual dissipation of the excess pore water pressure causes thermal volume reduction which is known as thermal consolidation. However, thermal consolidation in a three-phase soil system such as unsaturated soil is more sophisticated. In this paper, an analytical model for thermal consolidation around a heat source embedded in unsaturated clay or in calyey soils containing two immiscible fluids is developed based on the effective stress concept. Governing equations, including energy, mass, and momentum balance... 

    Numerical analysis of two-phase flow in heterogeneous porous media during pre-flush stage of matrix acidizing: Optimization by response surface methodology

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Sabooniha, E ; Rokhforouz, M. R ; Kazemi, A ; Ayatollahi, S ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Oil trapping behavior during the pre-flush stage is critically important to evaluate the effectiveness of matrix acidizing for the oil well stimulation. In this study, the visco-capillary behavior of the two-phase flow in the pore-scale is analyzed to investigate the influence of wetting properties for a natural rock sample. A two-dimensional model, based on Cahn-Hilliard phase-field and Navier-Stokes equations, was established and solved using the finite element method. A stability phase diagram for log capillary number (Ca)-log viscosity ratio (M) was constructed and then compared with the reported experimental works. The maximum and minimum ranges of capillary number and viscosity ratio... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: direct numerical simulation

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Droplet-based microfluidics in biomedical applications

    , Article Biofabrication ; Volume 14, Issue 2 , 2022 ; 17585082 (ISSN) Amirifar, L ; Besanjideh, M ; Nasiri, R ; Shamloo, A ; Nasrollahi, F ; De Barros, N. R ; Davoodi, E ; Erdem, A ; Mahmoodi, M ; Hosseini, V ; Montazerian, H ; Jahangiry, J ; Darabi, M.A ; Haghniaz, R ; Dokmeci, M.R ; Annabi, N ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e. passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications... 

    Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    , Article Radiation Physics and Chemistry ; Vol. 96 , 2014 , pp. 12-18 ; ISSN: 0969806X Razavi, S. M ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Abstract
    Poly(lactic acid) (PLA)/poly(vinyl acetate-. co-vinyl alcohol) [P(VAc-. co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-. co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-. co-VA) immiscible...