Loading...
Search for: lab-on-a-chip
0.005 seconds
Total 44 records

    Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering

    , Article ACS Applied Bio Materials ; 2021 ; 25766422 (ISSN) Rahimnejad, M ; Rabiee, N ; Ahmadi, S ; Jahangiri, S ; Sajadi, S. M ; Akhavan, O ; Saeb, M. R ; Kwon, W ; Kim, M ; Hahn, S. K ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials... 

    Polyamide/titania hollow nanofibers prepared by core–shell electrospinning as a microextractive phase in a fabricated sandwiched format microfluidic device

    , Article Journal of Chromatography A ; Volume 1528 , 2017 , Pages 1-9 ; 00219673 (ISSN) Rezvani, O ; Hashemi Hedeshi, M ; Bagheri, H ; Sharif University of Technology
    Abstract
    In this study, a low–cost microfluidic device from polymethyl methacrylate was fabricated by laser engraving technique. The device is consisted of a central chip unit with an aligned microchannel. Both sides of the engraved microchannel were sandwiched by two synthesized sheets from polyamide/titania (PA/TiO2) hollow nanofibers as extractive phases. The inlet and outlet of the device were connected to the polyether ether ketone tubes, while a peristaltic pump was used to deliver both sample and desorbing solvent through the microchannel. The recorded scanning electron microscopy images from the surface of the synthesized PA/TiO2 nanofibers, exhibit a good degree of homogeneity and porosity... 

    A foreign body response-on-a-chip platform

    , Article Advanced Healthcare Materials ; Volume 8, Issue 4 , 2019 ; 21922640 (ISSN) Sharifi, F ; Htwe, S. S ; Righi, M ; Liu, H ; Pietralunga, A ; Yesil Celiktas, O ; Maharjan, S ; Cha, B. H ; Shin, S. R ; Dokmeci, M. R ; Vrana, N. E ; Ghaemmaghami, A. M ; Khademhosseini, A ; Zhang, Y. S ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Understanding the foreign body response (FBR) and desiging strategies to modulate such a response represent a grand challenge for implant devices and biomaterials. Here, the development of a microfluidic platform is reported, i.e., the FBR-on-a-chip (FBROC) for modeling the cascade of events during immune cell response to implants. The platform models the native implant microenvironment where the implants are interfaced directly with surrounding tissues, as well as vasculature with circulating immune cells. The study demonstrates that the release of cytokines such as monocyte chemoattractant protein 1 (MCP-1) from the extracellular matrix (ECM)-like hydrogels in the bottom tissue chamber... 

    Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease

    , Article Biomaterials ; Volume 285 , 2022 ; 01429612 (ISSN) Amirifar, L ; Shamloo, A ; Nasiri, R ; de Barros, N. R ; Wang, Z. Z ; Unluturk, B. D ; Libanori, A ; Ievglevskyi, O ; Diltemiz, S. E ; Sances, S ; Balasingham, I ; Seidlits, S. K ; Ashammakhi, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recent advances in biomaterials, microfabrication, microfluidics, and cell biology have led to the development of organ-on-a-chip devices that can reproduce key functions of various organs. Such platforms promise to provide novel insights into various physiological events, including mechanisms of disease, and evaluate the effects of external interventions, such as drug administration. The neuroscience field is expected to benefit greatly from these innovative tools. Conventional ex vivo studies of the nervous system have been limited by the inability of cell culture to adequately mimic in vivo physiology. While animal models can be used, their relevance to human physiology is uncertain and...