Loading...
Search for: magnetism
0.021 seconds
Total 1523 records

    Identifying and Predicting Tumor and MS Disease Through MRI Data of Patients by Data Mining Tools

    , M.Sc. Thesis Sharif University of Technology Moazeni, Mehran (Author) ; Akhavan Niaki, Taghi (Supervisor)
    Abstract
    Today with the development of technology in medical science, there is a need to develop new methods to analyze and process the medical images. Furthermore, increasing use of machines and computers to accomplish prediction goals delineates that these tools had promising results. Because of all the above, this research focuses on processing and analyzing medical images with using data mining tools in order to identify MS and tumor disease which have been ubiquitous in last decades, fast and meticulous. To do so, we introduce a new clustering algorithm based on the modularity measure of graph networks as well as a new machine learning algorithm based on Kalman filter for Tensor-based data.... 

    Experimental Investigation of Effect of Nanoparticles on Fines Migration Control in Porous Media

    , M.Sc. Thesis Sharif University of Technology Movahedi, Nasir (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Fines migration due to their severe problems during oil production must be controlled. They cause the productivity decline due to their deposition near the well bore. Recently, application of nanotechnology in fine migration control has been much attended in both experimental and field case investigations. The main goal of the present study is to find out the ability and different effects of Nano particles (NPs) such as concentration, types and even the magnetic sensitivity to retain fines migration. In order for this, two groups of tests were conducted by engineered porous media. In this study, for the first time, an experimental setup was designed and constructed to investigate the control... 

    , M.Sc. Thesis Sharif University of Technology (Author) ; Fotouhi Firouzabadi, Morteza (Supervisor)
    Abstract
    A typical problem in applied mathematics and science is to estimate the future state of a dynamical system given its current state. One approach aimed at understanding one or more aspects determining the behavior of the system is mathematical modeling. This method frequently entails formulation of a set of equations, usually a system of partial or ordinary differential equations. Model parameters are then measured from experimental data or estimated from computer simulation or other methods. Solutions to the model are then studied through mathematical analysis and numerical simulation usually for qualitative fit to the dynamical system of interest and any relative time-series data that is... 

    Performance Analysis, Optimization and Prototyping of Doubly Salient PM Vernier Generators

    , M.Sc. Thesis Sharif University of Technology Ghods, Mehrage (Author) ; Oraee, Hashem (Supervisor) ; Nasiri-Gheidari, Zahra (Supervisor)
    Abstract
    In this thesis, no-load and full-load performance of Permanent Magnet Vernier Generators (PMVGs) is investigated in fully-aligned condition and under different types of mechanical faults. The studied mechanical faults are Static Eccentricity (SE), Dynamic Eccentricity (DE), Inclined Rotor (IR), and Run-out (RO). Furthermore, an analytical model is also developed to calculate the permeance of the air-gap and the induced voltages in the health machine and under studied mechanical faults. Then, 2-D and 3-D non-linear, time stepping finite element method is utilized for performance evaluation of the generator in no-load and full-load (with resistive, inductive and capacitive loads). In continue,... 

    Dynamic NMR Study of Ethyl N-(pipyridin carbotioate)

    , M.Sc. Thesis Sharif University of Technology Mehrabpoor, Masumeh (Author) ; Tafazzoli, Mohsen (Supervisor)
    Abstract
    In this project rotational barrier around the C-N bond in Ethyl N-(pipyridin carbotioate) has been studied by using DNMR spectroscopy. Spectra were taken at various temperatures , and then with simulation of bandshape broadening pattern at coalescence region, the exchange rate constant of were obtained for all temperatures. For simulation of line-shpe broadening Spinworks software was used, that with two interfaces made possible simulation with two bandshape simulator programs, DNMR and MEXICO. The rate constants obtained from the simulation were used for calculation of thermodynamic activation parameters (... 

    Chitosan–Bioactive Glass Composite Coating on Nd-Fe-B Magnetic Alloy Substrate by Electrophoretic Deposition

    , M.Sc. Thesis Sharif University of Technology Mehdipour, Mehrad (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    This research work deals with application of poly-saccharide to improve coating process of bioactive ceramic composite on aNd-Fe-B magnetic alloy substrate. Bioactive glass particles were synthesized through a sol-gel process and coated in the form of composite with poly-saccharide onto a magnetic substrate by electrophoretic deposition technique. Stable suspensions of 0.5 gr/lit polysaccharide polymer-ceramic were prepared using bioactive glass particles (<1µm), acetic acid 1%. The influence of added water to ethanol, pH and tri-ethanol-amine (TEA) additive on suspension stability, deposition rate and coating’s structure was investigated. It was shown that by increasing the water to ethanol... 

    Study Quantum Phases of Superconducting Kondo Lattice Model In s and p wave symmetry of Gap Function

    , M.Sc. Thesis Sharif University of Technology Moghtader, Mohammad Reza (Author) ; Kargarian, Mehdi (Supervisor)
    Abstract
    In this thesis, first we study superconductivity and its mechanisms then classify different types of that based on symmetry of gap function. After that, we shall discuss metallic systems that have impurities in them and propose two successful model describing this phenomenon, Anderson’s model and Kondo’s model. In the next step, by introducing Kondo lattice model which is an ordered array of impurities in system, try to solve it by mean-field approximation and will be seen a phase transition in a characteristic temperature known as Kondo’s temperature. Then generalize these models to situation when background system is a superconductor and study it’s behavior and quantum phases. Although... 

    Synthesis and Characterization of the Multifunctional Fe3O4@Mn3O4-LCysteine-g-C3N4 QDs System as a Contrast Agent for Dual-Model Magnetic Resonance and Fluorescence Imaging

    , M.Sc. Thesis Sharif University of Technology Moeini, Ali (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Khachatourian, Adrine Malek (Supervisor)
    Abstract
    Cancer is one of the most important problems that affects public health. If this disease is diagnosed quickly in the patient's body, it can be prevented and treated by determining the stage of the disease and establishing a treatment protocol. Magnetic resonance imaging (MRI) and fluorescence imaging (FI) are among the imaging methods. In order to increase the contrast of images, researchers have turned to the synthesis of materials under contrast agents, which improve diagnostic sensitivity. Synthesis of nanoparticles as multi-mode contrast agents can enhance imaging methods. In this research, the synthesis and characterization of the multifunctional Fe3O4-Mn3O4-LCysteine@g-C3N4 QDs system... 

    Experimental and Numerical Investigation on the Single Drop Liquid-liquid Mass Transfer in the Presence of Magnetic Nano-particles (Ferrofluids) and Magnetic Field

    , Ph.D. Dissertation Sharif University of Technology Memari, Mohammad (Author) ; Molaie Dehkordi, Asghar (Supervisor) ; Seif Kordi, Ali Akbar (Co-Supervisor)
    Abstract
    The main objective of the present work was to improve the turbulence in single drops using ferrofluids (magnetic nanoparticles) in the presence of uniform and oscillating magnetic fields. In this regard, magnetite nanoparticles ($\mathrm{Fe_3O_4}$) were synthesized by co-precipitation method, characterized using DLS, FT-IR, XRD, VSM, and TEM, and their stability was checked by UV-Vis. The obtained results indicate the proper synthesis of nanoparticles with a mean diameter of about 20 nm and by coating their surfaces by silane that were well stabilized in the base fluid. In the numerical section, the governing equations of transport phenomena for a single drop containing magnetic fluids were... 

    A Novel Structural Based Similarity Measure for MRI and Ultrasound Registration

    , M.Sc. Thesis Sharif University of Technology Moaven, Aria (Author) ; Fatemizadeh, Emadodin (Supervisor)
    Abstract
    One of the most important issues in medical image processing is the registration of images with various imaging modalities, because in this case, one can take advantage of these imaging modalities and sometimes fuse and use the useful information of each one in the form of a single image.As it was said, MRI and ultrasound images each have their own disadvantages and advantages, and by considering these two modalities, they have tried to integrate the good features of these two. As we know, one of the destructive cases in the MRI image is the inhomogeneity of the image, a inhomogeneity due to the fact that the main magnetic field is not constant and makes the parts of the image brighter or... 

    Design and Optimization of Magnetic Resonance Signal Detector to Enhancement of Sensitivity and SNR in Proton Precession Sensor

    , M.Sc. Thesis Sharif University of Technology Mazaheri Karvani, Jamal (Author) ; Fardmanesh, Mahdi (Supervisor)
    Abstract
    Proton precession is used in measurement of scalar magnetic field intensity. In this sensor, the magnetic field intensity is calculated through Larmor frequency using the proton precession frequency around the magnetic field. The accuracy of this sensor is in the range of picoTesla which is used for magnetic field measurement as well as the calibration of vector magnetic sensors. The signal to noise ratio in this sensor is due to the dimension and resistances of the wires and is a kind of RMS random noise. Although, changing the dimension of the wires for noise reduction and increasing the signal amplitude requires the fabrication of a bulky sensor with low power consumption. Therefore, it... 

    Structural and Electric Transport Properties of Lanthanum Based Manganites and Barium Based Ruthenates

    , Ph.D. Dissertation Sharif University of Technology Mazaheri, Mojtaba (Author) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The goal of this thesis is to understand the physical properties of lanthanum based manganites and barium based ruthenates. In order to obtain negative colossal magnetoresistance in manganites and fabrication of barium ruthenate in ordinary condition, the effects of variables such as ionic radii, chemical composition, temperature, magnetic field and processing in manganites and ruthenates systems are investigated. In the first part, the effects of potassium doping on structure, metalinsulator transition and magnetoresistance in )La1-yKy)0.7 Ca0.3 MnO3 and)La1-yKy)0.7 Ba0.3 MnO3 manganites systems are studied. Polycrystalline samples of manganites are synthesized by the sol‐gel method. In the... 

    Anderson Impurity Model in Dirac Matter

    , Ph.D. Dissertation Sharif University of Technology Mashkoori, Mahdi (Author) ; Jafari, Akbar (Supervisor)
    Abstract
    In this thesis we have been mainly interested in studying Single Impurity Anderson model (SIAM) in Dirac fermions. Although this model seems to be simple, the rich physics of SIAM can not be underestimated. In this thesis we were interested in Dirac materials, systems which their low energy excitations are described by Dirac equation.Therefore, considering Dirac material in two dimensions(2D), we briefly review the distinct features of one atom thick layer of carbon. In addition, we will explain the effective Hamiltonian of Bismuth near L point which is considered a three dimensional(3D) Dirac material. Because of very strong spin-orbit interaction, bismuth is a key element in topological... 

    Device on a Chip, in Order to Control and Separation of Circulating Tumor Cells

    , M.Sc. Thesis Sharif University of Technology Masoudi, Mohammad Mahdi (Author) ; Shamloo, Amir (Supervisor) ; Khodaygan, Saeed (Supervisor)
    Abstract
    The process of separating cells from a laboratory sample, is a crucial step in biotechnology and medical science. Cells separation is important for various reasons, including the identification and treatment of diseases, as an example, separation of Circulating Tumor Cells (CTCs) from patient blood sample. CTCs are cells that shed from a tumor and diffuse into blood vessels. These cells are the starters of metastasis, the process in which cancer spreads in body, and are main reason of deaths caused by cancer. Extremely low percentages of target cells in the blood, clarify the importance of highly accurate and sensitive separation. Currently, conventional separation methods are of macro-order... 

    Synthesis and Characterization of Colloidal Superparamagnetic Iron Oxide and Iron/Iron Oxide Nanoparticles as MRI Contrast Agent

    , Ph.D. Dissertation Sharif University of Technology Masoudi, Afshin (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Seyed Reyhani, Morteza (Supervisor)
    Abstract
    As contrast enhancement agent, two different structures of superparamagnetic nanoparticles were synthesized. Iron oxide nanoparticles were prepared through an alkaline coprecipitation method of Iron (II) and (III) ions. PEG-6000 was used as biocapping material and its effect on particle size, colloidal stability and cytotoxicity was evaluated. On the other hand, novel core/shell structures were produced by NaBH4 reduction process of iron (III) in an aqueous media following by further oxidation by two different methods using (CH3)3NO oxygen transferring agent and exposure to oxygen flow. In both cases, structural examinations were conducted via X-ray diffraction, electron microscopy and... 

    Synthesis of γ-Fe2O3 Nanoparticles by Gelatin Mediator and Synthesis of γ-Fe2O3/SiO2/PCA/Ag-NPs Nanostructure Drug Delivery System

    , M.Sc. Thesis Sharif University of Technology Masoud, Nazila (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Maghemite (γ-Fe2O3) nanoparticles were produced after high temperature oxidation of gelatin-Fe3O4 nanocomposite, obtained from a common coprecipitation process of Fe2+ and Fe3+ ions in an alkaline medium in the presence of a gelatin protein as an effective mediator. Size, shape, surface morphology and magnetic properties of the prepared γ-Fe2O3 nanoparticles were characterized using XRD, FTIR, TEM, SEM and VSM data. The results revealed that primary, gelatin-Fe3O4 nanocomposite had been formed and next, the gelatin decomposition in furnace produced a spinel structure of γ-Fe2O3. The effects of furnace temperature and time of heating together with the amount of gelatin on the produced... 

    Dynamic Modeling and Localization of a Moving Magnetic Particle in a Fluid for Capsule Endoscopy Application

    , M.Sc. Thesis Sharif University of Technology Mazinani, Ali (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    Endoscopy is a medical operation in which a camera is sent into the patient's body and the physician starts taking pictures at specified times. In the traditional endoscopic procedure, a camera is sent into the body by a guiding wire. This can cause severe pain to the patient. In the newer method, a camera is mounted on a small capsule and the patient swallows the capsule. Then the camera inside the capsule starts taking photos and sends them out. This procedure, in addition to being painless, allows the physician to access the innermost parts of the body or the digestive tract.In capsule endoscopy, unlike the older method, one has to find the position and orientation of the capsule at any... 

    Numerical Study of Heat Transfer Enhancement in Porous Medium by Applying Magnetic Field on Nano Fluid

    , M.Sc. Thesis Sharif University of Technology Morshedi, Golnoosh (Author) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    A 2D simulation has been carried out to study the effect of magnetic field on heat transfer and pressure drop of nanofluid flowing through a pipe filled with porous medium. The nanofluid flow is modeled as a single-phase flow, and Darcy–Brinkman–Forchheimer equation is employed to model fluid flow in porous media. A constant uniform heat flux was imposed on the walls of the cylinder, and the values of Darcy number, Hartmann number, and volume fraction of the nanoparticles were selected as 0.1, 200, and 0.2, respectively. Effects of parameters such as Reynolds number, the material of the porous medium (conductivity and porosity), and material of nanofluids have been investigated in the... 

    , M.Sc. Thesis Sharif University of Technology Mardiha, Milad (Author) ; Vakilian, Mehdi (Supervisor) ; Fardmanesh, Mehdi (Supervisor)

    Relaxation Process in Spin Nuclei

    , M.Sc. Thesis Sharif University of Technology Marhabaie, Sina (Author) ; Tafazzoli, Mohsen (Supervisor)
    Abstract
    In this research the relaxation processes of spin nuclei was quantitatively described using computer programs. According to our data, both longitudinal and transverse relaxations consist of five exponentials of the forms of and . The parameters and were represented as a functions of . Analytical expressions were extracted for dynamic frequency shift's components in addition to representing them as a function of . In solving of transverse and longitudinal relaxation's equations, the transverse and longitudinal relaxation matrices were extracted which are useful in the investigation of exchange effect in these nuclei. The accuracy of our computer program was confirmed using it for...