Loading...
Search for: magnetism
0.022 seconds
Total 1524 records

    Impact of holmium on structural, dielectric and magnetic properties of Cu–Zn spinel ferrites synthesized via sol–gel route

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 2 , 2021 , Pages 2205-2218 ; 09574522 (ISSN) Akhter, M. J ; Khan, M. A ; Hussain, A ; Akhtar, M. N ; Ahmad, M ; Javid, M. A ; Sharif University of Technology
    Springer  2021
    Abstract
    The mixed nano-ferrites materials Cu0.6Zn0.4HoxFe2−xO4 (0.00 ≤ x ≤ 0.12) were prepared via the sol–gel auto combustion technique. The TGA curve established the annealing temperature (500 °C) for phase formation. The single exothermic peak on the DSC plot occurred at 341 °C temperature. XRD patterns of these nano ferrites verified single phase formation of the FCC cubic structure. The lattice constant a was increased from 8.4244 to 8.4419 Å and then its value decreased to 8.4319 Å. Crystallite size was found in the range of 7 to 16 nm. The surface morphology of the samples was observed from the scanning electron microscope (SEM) images. The grain size was found within the range of 90 nm to... 

    Signal enhancement techniques for rf SQUID based magnetic imaging systems

    , Article Superconductor Science and Technology ; Volume 19, Issue 8 , 2006 , Pages 821-824 ; 09532048 (ISSN) Akram, R ; Fardmanesh, M ; Schubert, J ; Zander, W ; Banzet, M ; Lomparski, D ; Schmidt, M ; Krause, H. J ; Sharif University of Technology
    2006
    Abstract
    We have investigated the rf SQUID (radio-frequency superconducting quantum interference device) and its coupling to tank circuit configurations to achieve an optimal front-end assembly for sensitive and high spatial resolution magnetic imaging systems. The investigation of the YBCO rf SQUID coupling to the conventional LC tank circuits revealed that coupling from the back of the SQUID substrate enhances the SQUID signal while facilitating the front-end assembly configuration. The optimal thickness of the substrate material between the SQUID and the tank circuit is 0.4 mm for LaAlO3 resulting in an increase of the SQUID flux-voltage transfer function signal, Vspp, of 1.5 times, and 0.5 mm for... 

    A facile, two-step synthesis and characterization of Fe3 O4–LCysteine–graphene quantum dots as a multifunctional nanocomposite

    , Article Applied Nanoscience (Switzerland) ; Volume 11, Issue 3 , 2021 , Pages 849-860 ; 21905509 (ISSN) Alaghmandfard, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this research, a facile, two-step synthesis of Fe3O4–LCysteine–graphene quantum dots (GQDs) nanocomposite is reported. This synthesis method comprises the preparation of GQDs via hydrothermal route, which should be conjugated to the LCysteine functionalized core–shell magnetic structure with the core of about 7.5-nm iron oxide nanoparticle and 3.5-nm LCysteine shell. LCysteine, as a biocompatible natural amino acid, was used to link magnetite nanoparticles (MNPs) with GQDs. X-ray powder diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray were used to investigate the presence and formation of MNPs, L Cysteine functionalized MNPs,... 

    A facile, two-step synthesis and characterization of Fe3 O4–LCysteine–graphene quantum dots as a multifunctional nanocomposite

    , Article Applied Nanoscience (Switzerland) ; Volume 11, Issue 3 , 2021 , Pages 849-860 ; 21905509 (ISSN) Alaghmandfard, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this research, a facile, two-step synthesis of Fe3O4–LCysteine–graphene quantum dots (GQDs) nanocomposite is reported. This synthesis method comprises the preparation of GQDs via hydrothermal route, which should be conjugated to the LCysteine functionalized core–shell magnetic structure with the core of about 7.5-nm iron oxide nanoparticle and 3.5-nm LCysteine shell. LCysteine, as a biocompatible natural amino acid, was used to link magnetite nanoparticles (MNPs) with GQDs. X-ray powder diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray were used to investigate the presence and formation of MNPs, L Cysteine functionalized MNPs,... 

    Comparison of classification and dimensionality reduction methods used in fMRI decoding

    , Article Iranian Conference on Machine Vision and Image Processing, MVIP ; 2013 , Pages 175-179 ; 21666776 (ISSN) ; 9781467361842 (ISBN) Alamdari, N. T ; Fatemizadeh, E ; Sharif University of Technology
    2013
    Abstract
    In the last few years there has been growing interest in the use of functional Magnetic Resonance Imaging (fMRI) for brain mapping. To decode brain patterns in fMRI data, we need reliable and accurate classifiers. Towards this goal, we compared performance of eleven popular pattern recognition methods. Before performing pattern recognition, applying the dimensionality reduction methods can improve the classification performance; therefore, seven methods in region of interest (RDI) have been compared to answer the following question: which dimensionality reduction procedure performs best? In both tasks, in addition to measuring prediction accuracy, we estimated standard deviation of... 

    Sliding mode control of electromagnetic tethered satellite formation

    , Article Advances in Space Research ; Volume 58, Issue 4 , 2016 , Pages 619-634 ; 02731177 (ISSN) Alandi Hallaj, M. A ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic... 

    Sliding mode control of electromagnetic system based on fuzzy clustering estimation (an experimental study)

    , Article Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis ; Volume 1 , 2004 , Pages 843-850 ; ISBN: 0791841731 ; ISBN: 9780791841730 Alasti, A ; Salarieh, H ; Shabani, R ; Sharif University of Technology
    Abstract
    Using the combination of fuzzy clustering estimation and sliding mode control, a technique for controlling the magnetic levitation (ML) systems is introduced. This technique is applied to an experimental setup of an ML system for investigating the method derived. The system considered, is a symmetric rotor supported by a cantilever load cell beam and excited by only one electromagnet of a 4-pole magnetic bearing setup. After demonstrating the experimental setup instruction and the specifications of its parts, the clustering, and the sliding mode control methods are explained briefly, then the quality of implementing the techniques to the setup is described step by step. Finally, the results... 

    Sliding mode control of electromagnetic system based on fuzzy clustering estimation (an experimental study)

    , Article Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis - 2004, Manchester, 19 July 2004 through 22 July 2004 ; Volume 1 , 2004 , Pages 843-850 ; 0791841731 (ISBN); 9780791841730 (ISBN) Alasti, A ; Salarieh, H ; Shabani, R ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    Using the combination of fuzzy clustering estimation and sliding mode control, a technique for controlling the magnetic levitation (ML) systems is introduced. This technique is applied to an experimental setup of an ML system for investigating the method derived. The system considered, is a symmetric rotor supported by a cantilever load cell beam and excited by only one electromagnet of a 4-pole magnetic bearing setup. After demonstrating the experimental setup instruction and the specifications of its parts, the clustering, and the sliding mode control methods are explained briefly, then the quality of implementing the techniques to the setup is described step by step. Finally, the results... 

    Nonlinear parametric identification of magnetic bearings

    , Article Mechatronics ; Volume 16, Issue 8 , 2006 , Pages 451-459 ; 09574158 (ISSN) Alasty, A ; Shabani, R ; Sharif University of Technology
    2006
    Abstract
    This paper proposes a new electromagnetic force model and its parameter identification method. As a case study, the parameters of the proposed model for an experimental electromagnetic bearing system are obtained using extended Kalman filter (EKF). The experimental setup includes a symmetric rigid rotor which is disturbed by the electromagnet of a magnetic bearing. Experimental results show that the system response to harmonic excitation includes super-harmonic terms which are not shown by the well-known conventional electromagnetic force model. This shortcoming necessitates an investigation to propose a more realistic electromagnetic force model. Based on the observations of the system... 

    A novel hydro magnetic micro-pump and flow controller

    , Article 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, Darmstadt, 23 June 2008 through 25 June 2008 ; Issue PART B , June , 2008 , Pages 1537-1544 ; 0791848345 (ISBN); 9780791848340 (ISBN) Alavi Dehkordi, E ; Esmaily Moghadam, M ; Shafii, M. B ; ASME ; Sharif University of Technology
    2008
    Abstract
    In order to deal with the limitations of micro-pumps and micro-valves and meet the advantages of magnetic systems a novel plan is described here. The idea behind the plan is that magnetic particles, mixed and dispersed in a carrier liquid, can be accumulated and retained at specific sites to form pistons in a micro-tube using some external magnetic field sources along the tube. In other words, using some solenoids and switching them on and off, in a specific order and period, causes the desired external magnetic field variation through the tube. Changing the period and the mode of activation and deactivation of the solenoids, which are called switching time and switching mode, respectively,... 

    Design optimization of a double-stage resolver

    , Article IEEE Transactions on Vehicular Technology ; Volume 68, Issue 6 , 2019 , Pages 5407-5415 ; 00189545 (ISSN) Alemi-Rostami, M ; Alipour Sarabi, R ; Rezazadeh, G ; Nasiri Gheidari, Z ; Oraee, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Accurate position estimation is an integral part of any motion control system. Besides, instantaneous position of poles plays an important role in electronic drive system of modern PM machines. Resolvers, due to their structure, are the most reliable position sensors in harsh environments. However, resolvers are not as accurate as optical encoders in normal conditions. To increase the accuracy of these sensors, various solutions are used, such as optimization in winding arrangement, rotor and stator contour, slot-pole combinations, and improvements in resolver-to-digital converter. In this paper, fractional slot concentrated winding is used in an axial flux resolver. By the aid of winding... 

    A low cost front-end converter with maximum power per ampere for rooftop wind turbines

    , Article IEEE Access ; Volume 9 , 2021 , Pages 131236-131244 ; 21693536 (ISSN) Alemi Rostami, M ; Rezazadeh, G ; Tahami, F ; Ravanji, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Small Permanent Magnet Synchronous Generators (PMSGs) are widely used in small rooftop wind turbines. In order to inject the electric power generated by the PMSG, into the grid, a back-to-back AC/DC/AC converter is required. In this paper, a low cost with high efficiency converter is proposed for the rectifier stage to obtain the maximum power per ampere of PMSG. This structure based on Discontinuous Conduction Mode Single-Ended Primary Inductor Converter (DCM SEPIC) with a single power electronic switch, proposes a converter which is cost-effective and suitable for the small wind turbine used in residential applications. Furthermore, other advantages of the proposed converter include... 

    A low cost front-end converter with maximum power per ampere for rooftop wind turbines

    , Article IEEE Access ; Volume 9 , 2021 , Pages 131236-131244 ; 21693536 (ISSN) Alemi Rostami, M ; Rezazadeh, G ; Tahami, F ; Ravanji, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Small Permanent Magnet Synchronous Generators (PMSGs) are widely used in small rooftop wind turbines. In order to inject the electric power generated by the PMSG, into the grid, a back-to-back AC/DC/AC converter is required. In this paper, a low cost with high efficiency converter is proposed for the rectifier stage to obtain the maximum power per ampere of PMSG. This structure based on Discontinuous Conduction Mode Single-Ended Primary Inductor Converter (DCM SEPIC) with a single power electronic switch, proposes a converter which is cost-effective and suitable for the small wind turbine used in residential applications. Furthermore, other advantages of the proposed converter include... 

    Design and optimization of a large-scale permanent magnet synchronous generator

    , Article Scientia Iranica ; Volume 29, Issue 1 D , 2022 , Pages 217-229 ; 10263098 (ISSN) Alemi-Rostami, M ; Rezazadeh, G ; Alipour Sarabi, R ; Tahami, F ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Direct-drive permanent magnet synchronous generators enjoy numerous advantages including improved reliability, low maintenance, long life, and developed performance characteristics. In recent years, many researchers have worked on these generators to enhance their performance, especially for the wind turbine application. The focus of this paper is on the development of a step-by-step method for the design of a permanent magnet synchronous generator. Then, the winding function method is used to model the generator and calculate its output characteristics analytically. The analytical results of the designed generator are validated using Finite Element Analysis (FEA) and it is demonstrated that... 

    Simulation analysis of MHD hybrid Cu-Al2O3/H2O nanofluid flow with heat generation through a porous media

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19165-19179 ; 0363907X (ISSN) Ali, K ; Ahmad, S ; Nisar, K. S ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. The present work investigates the MHD laminar flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet immersed in a porous medium. The effect of induced magnetic field has also been taken into account. The flow model PDEs are rehabilitated into ordinary ones using a persuasive tool of similarity variables. The analogous system of dimensionless equations alongside the boundary conditions is numerically treated with the Successive-Over-Relaxation (SOR) technique. Flow and heat transfer aspects of... 

    Simulation analysis of MHD hybrid Cu-Al2O3/H2O nanofluid flow with heat generation through a porous media

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19165-19179 ; 0363907X (ISSN) Ali, K ; Ahmad, S ; Nisar, K. S ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. The present work investigates the MHD laminar flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet immersed in a porous medium. The effect of induced magnetic field has also been taken into account. The flow model PDEs are rehabilitated into ordinary ones using a persuasive tool of similarity variables. The analogous system of dimensionless equations alongside the boundary conditions is numerically treated with the Successive-Over-Relaxation (SOR) technique. Flow and heat transfer aspects of... 

    A self-similar approach to study nanofluid flow driven by a stretching curved sheet

    , Article Symmetry ; Volume 14, Issue 10 , 2022 ; 20738994 (ISSN) Ali, K ; Jamshed, W ; Ahmad, S ; Bashir, H ; Ahmad, S ; Tag El Din, E.S.M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Nano-fluids have considerable importance in the field of thermal development that relates to several industrial systems. There are some key applications in recent construction systems flow, as well as microscale cooling gadgets and microstructure electric gadgets for thermal migration. The current investigation concludes the study of electrically conducting nano-fluid flow and heat transfer analysis in two-dimensional boundary layer flow over a curved extending surface in the coexisting of magnetic field, heat generation and thermal radiation. The small sized particles of copper (Cu) are taken as nanoparticles and water is assumed to be the base fluid. We used quasi-linearization and central... 

    Imposed magnetic field impact on vortex generation in the laminar nanofluid flow: A computational approach

    , Article International Communications in Heat and Mass Transfer ; Volume 139 , 2022 ; 07351933 (ISSN) Ali, K ; Prakash, M ; Jamshed, W ; Ibrahim, R. W ; Ahmad, S ; Raizah, Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal manufacturing plants, nuclear power plants (which produce steam, by using thermal energy yielded during the nuclear fission, for spinning enormous turbines to generate electricity), and geothermal power plants are a few in the extensive list of technologies where different processes occur in high temperature environment in the presence of strong magnetic fields. Nanofluids (NFs), on the other hand, have been successful in achieving wide acceptance as the next generation coolant in the above mentioned industries as well as in the automobiles, heat exchangers, and steam boilers, owing to their remarkable thermal performance. These observations motivate the authors to explore the change... 

    A new Y-based HTSC with Tc above 100 K

    , Article Physica C: Superconductivity and its Applications ; Volume 469, Issue 22 , 2009 , Pages 2012-2014 ; 09214534 (ISSN) Aliabadi, A ; Akhavan Farshchi, Y ; Akhavan, M ; Sharif University of Technology
    2009
    Abstract
    In search of finding the dominant mechanism in high temperature superconductivity phenomena, the Y3Ba5Cu8O18 compound was synthesized through the standard solid-state reaction technique. Characteristic XRD experiment was performed on the samples and was analyzed by the MAUD software refinement program. The analysis results indicate a 358 phase structure with the initial nominal stoichiometry. The electrical resistivity and its behavior under different magnetic field were measured. The electrical resistivity indicates the transition temperature Tc onset = 102 K with transition width ΔTc = 2.4 K. This is the first observation of such a high transition temperature in the Y-based compound.... 

    REACT: Read/write error rate aware coding technique for emerging STT-MRAM caches

    , Article IEEE Transactions on Magnetics ; Volume 55, Issue 5 , 2019 ; 00189464 (ISSN) Aliagha, E ; Hosseini Monazzah, A. M ; Farbeh, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Spin-transfer torque magnetic RAMs (STT-MRAMs) are the most promising alternative for static random-access memories in large last-level on-chip caches due to their higher density and near-zero leakage power. However, the reliability of STT-MRAMs is threatened by high probability of read disturbance and write failure. Both read disturbance and write failure, which cause a soft error in the cache cells, have an asymmetric behavior. Read disturbance occurs only in STT-MRAM cells storing '1' value, and write failure error rate in a → 1 transition is much higher than that in a 1 → 0 transition. In this paper, we propose Read/write Error-rate Aware Coding Technique (REACT) to improve the...