Loading...
Search for: magnetism
0.014 seconds
Total 1523 records

    Analysis and Test of Magnetic Behavior of Special Materials and its Nano Scaling Behavior

    , M.Sc. Thesis Sharif University of Technology Aram, Mohammad Hassan (Author) ; Rashidian, Bijan (Supervisor)
    Abstract
    In the first part of this thesis, limitations on magnetic field distribution are studied. After that methods of creating high gradient magnetic field and limitations on it is discussed. In the second part, magnetic properties of materials and the effect of particle shape and size on these properties are studied. In this part a comprehensive analysis on demagnetizing field inside magnetic bodies is also conducted and its dependence on material susceptibility and shape is discussed. At the end of this part the effect of particle shape and size on its hysteresis loop is demonstrated theoretically, practically and by computer simulation. In order to ... 

    Excitation of Magnetic Surface Waves for Anomalous Reflection and Transmission of Electromagnetic Waves

    , M.Sc. Thesis Sharif University of Technology Abbasnezhad, Farhad (Author) ; Rejaei, Behzad (Supervisor)
    Abstract
    The phenomenon of extraordinary transmission of electromagnetic waves through arrays of small holesin metallic plates has attracted the attention of many researchers in the past decade.This behavior may be utilized to fabricate extremely narrowband microwave or optical filters and near-field sensing devices where the sub-millimeter hole can act like a probe. Despite almost ten years of continuous research, however, the uncertainty regarding the mechanisms underlying this phenomenon somewhat persists. Different theories concerning the origin of such behaviors, including surface waves, diffraction of electromagnetic waves, and waveguide phenomenon inside holes and slits have been proposed. But... 

    Synthesis and Properties of Cationic Polynulcear Complexes of Manganese with the Anionic Keggin Type Polyoxometalates as Single Molecule Magnets Hx[Mn4O2(CH3COO)7(bipy)2]n[Kegiin-Polyoxometalates]m.yH2O

    , M.Sc. Thesis Sharif University of Technology Daneshmand Kashani, Pargol (Author) ; Mohammdi Boghaei, Davar (Supervisor)
    Abstract
    Single molecule magnets due to their magnetic tunneling effect and the interaction they have with an external magnetic field are used widely in quantum computing and also the storage of data with high capacities. Polyoxometalates that are used as counter ions for cationic single molecule magnets, are able to affect their spin-couple nature via a magnetic exchange and also have an influence on the crystal accumulation in order to change the magnetic property of the molecule. In this research the probability of sedimenting a cationic single molecule magnet, [Mn4O2(CH3COO)7(bipy)2]+, with the use of anionic polyoxometalates with Keggin structures has been investigated. Thus, the single... 

    Evaluation the Effect of Thermo-Mechanical Parameters on Microstructure and Texture of Electrical Steel for Improving Magnetic Permeability

    , M.Sc. Thesis Sharif University of Technology Ahmadian, Peyman (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Dependence of some magnetic properties such as core loss and permeability on temper rolling was studied in this thesis. It is shown that with a proper temper rolling sharper textures are obtained in the electrical steel and the magnetic properties in the longitudinal and traverse directions are improved. By texture analysis, it is shown that because of temper rolling, shear strain on the surface of the sheet is the main factor for abnormal grain growth and shear texture formation on the surface. The result of formation of this texture is enhancement of the {100} intensity and reduction of the {111} intensity, leading to the improvement of the permeability. Temper rolling is always... 

    Investigate the Relationship between the Structure of the Magnetic and Electrical properties of Iron-Based Soft Magnetic Composite Coated with Nanoparticles Magnetite

    , M.Sc. Thesis Sharif University of Technology Azadmanesh, Arefe (Author) ; Maddah Hosseini, Hamid Reza (Supervisor) ; Shokrollahi, Houman (Supervisor)
    Abstract
    In this study, soft magnetic composite properties of iron base with insulation magnetite nanoparticles have been studied. First magnetite nanoparticles were prepared by co-precipitation method. The iron and magnetite particles with different weights were dissolved in acetone until the acetone evaporates and the composition uniformity of iron and magnetite powder was obtained. Then press the button on the 4 samples of 400, 600, 800, 1000 MPa, and the weight of Magnetite 1, 3, 5, 7 and 10 percent were cold. X-ray diffraction and scanning electron microscope test results showed that iron and magnetite are homogenous distributed. The measurement of AC magnetic properties also suggest that by... 

    Experimental Study of Pool Boiling Heat Transfer Enhancement by Presence of Magnetic Particles under the Influence of Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Feizbakhshi, Morteza (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Study on pool boiling heat transfer characteristics of water-based magnetic fluid and distilled water containing micro size particles has performed. Different concentration in each experiment has been studied to investigate the effect of magnetic fluid and micro size particles on boiling heat transfer on horizontal plate heater. The nickel particles was used as micro size particles which is expected to increase thermal performance of water due to high thermal conductivity of nickel. Experimental results showed adding nickel micro size particles to water can deteriorate the boiling heat transfer coefficient. However the amount of deterioration was the same for all concentrations of nickel... 

    Fabrication and Experimental Investigation of Micro Heat Pipe Using Ferrofluid Under Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Jahani, Nariman (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract

    On track to achieve heat transfer methods for small-scale, this research describes the design process of fabrication and experimental analysis of micro heat pipes with a rectangular section. First, the overview of micro-fluid systems and conventional mechanisms of heat transfer in these systems is discussed. Then, in order to describe the research theory and principles of heat pipe, various types of heat pipes micro scale and macro scaled are analyzed. After that, the method used for fabrication of a micro heat pipe without grooves is described. A new method for fabrication of MHP is investigated in this study. By using this method, one fiber glass board is fabricated by printed circuit... 

    Experimental Investigation of Pulsating Heat Pipe Using Nano-Fluid

    , M.Sc. Thesis Sharif University of Technology Taslimifar, Mehdi (Author) ; Saidi, Mohammad Hassan (Supervisor) ; Afshin, Hossain (Supervisor) ; Shafiee, Mohammad Behshad (Supervisor)
    Abstract
    Considerable increase in speed and decrease in size of electronic devices results in increase of heat flux, so there is a need to enhance efficiency of cooling electronic devices. In the present research two sets of OLPHPs with five turns for two different magnetic nano-fluids were fabricated and the effects of working fluid (water, and two types of magnetic nano-fluids), working pressure, concentration, magnetic field, magnets location, and inclination angle on the thermal performance of OLPHPs have been considered in both startup and steady thermal conditions.
    Experimental results show that magnetic nano-fluids can improve thermal performance of the OLPHPs. Application of magnetic... 

    Synthesis and Characterization of Electrospun Ceramic Nanofibers

    , M.Sc. Thesis Sharif University of Technology Rastegar, Soroush (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    Electrospinning is a simple and versatile technique for producing polymeric and ceramic nanofibers. The conventional procedure for fabrication of ceramic nanofibers is a combination of sol-gel techniques and electrospinning. The main challenge is the spin polymer nanofiber in fabricate of fibers with diameter from 1 to 100 nm, while their standard deviation are as low as possible. Uniform beads free polyamidenanofibers with lower diameter were fabricated.A 18% w/w of polyamide in formic acid was chosen and the effect of magnetic field, adding magnetic ionic liquid surfactant, auxiliary electrode on the main fiber were investigated. They termsfiber 1 to fiber 5. The mean diameters of 489,... 

    Investigation of Vibration and Stability of Graphene NanoRibbone under Magnetic field Effect

    , Ph.D. Dissertation Sharif University of Technology Mohammadkhani, Hasan (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    This study aims at investigating the vibration analysis and stability of Graphene Nano-Ribbon (GNR) under a magnetic field using continuum mechanics approach and an efficient hybrid modal-molecular dynamics method. The force distribution on the GNR due to the magnetic field is determined by Maxwell's equations, Biot-savart law, magnetic dipoles and Lorentz force law.
    Using the continuum mechanics model, the vibration of the GNR in a magnetic field is investigated by some problems and the resonance frequencies, stability boundaries and critical load are studied.
    Furthermore, in this present study, an efficient hybrid modal-molecular dynamics method is developed for the vibration... 

    Shear Viscosities of a Hot Fermi Gas in the Presence of a Strong Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Jalouli, Alireza (Author) ; Sadooghi, Neda (Supervisor)
    Abstract
    Relativistic hydrodynamics and kinetic theory are often used to analyze the experimental data from heavy ion collisions. One of the most important observations is the anisotropy in the number density of the detected particles after the collision in the longitudinal and perpendicular directions with respect to the reaction plane. On the other hand, very strong magnetic fields are created during the early stages of non-central heavy ion collisions. The presence of constant background magnetic fields, aligned in the perpendicular direction to the reaction plane, can be one of reasons for the aforementioned anisotropy in the number density of detected particles. In this thesis, we study the... 

    Designing, Computational Modeling and Fabrication of a Magnetic Centrifugal Microfluidic to Separate Circulating Tumor Cells from Blood Sample

    , M.Sc. Thesis Sharif University of Technology Selahi, Amirali (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Separating cells from a mixed sample is a required task in biotechnology and modern medicine, for example to isolate CTC’s that are of interest for doing therapy and diagnosing or doing research. A minute percentage of target cells must be separated from a large amount of unwanted cells. These target cells like CTC’s could be as rare as 1 target cell per millions of unwanted background cells. Hence Microfluidic cell sorting schemes based upon fluorescent labelling, electrophoresis, dielectrophoresis and magnetophoresis have been devised. Microfluidic magnetically-activated cell sorting (MACS) does not need any optical instrument or current source and electrode. By using an electromagnet or... 

    Modeling and Simulation of Magnetic Nanofluids Convective Heat Transfer around a Sphere in the Presence of External Magnetic Feild

    , M.Sc. Thesis Sharif University of Technology Abbasi, Zeinab (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    The good performance in cooling, especially in systems with small dimensions, is one of the critical needs of many industries. Heat transfer around sphere in all systems that contain particles, is important. Many methods have been proposed to improve the heat transfer rate but using nanofluids is one of the ways that has attracted more attention than others. Ferrofluids have magnetic properties in addition to nanofluids properties and this has a significant impact in increasing the heat transfer rate. Controlling heat transfer by magnetic field is one of the unique characteristics of this fluid. The project aim is to investigate the effect of magnetic field on heat transfer around sphere in... 

    Evaluation and Simulation of using Magnetite as Heat Transfer Medium in Direct Solar Absorption Collectors

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Mahyar (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    In this study, application of a Magnetic Nanofluid consisting of Magnetite as Nanoparticle and Water as base fluid in DASC systems is investigated. The DASC system is modeled theoretically and behavior of such system is predicted.In this study a comparison between magnetite Nanofluid and some other common Nanofluids is conducted. The study shows that Magnetite Nanofluid has a better performance and efficiency than Water, Al2O3 Nanofluid and SiO2 Nanofluid. Also magnetite Nanofluid and TiO2 Nanofluid function are almost similar.Also effect of external magnetic field on the performance of magnetite Nanofluid is investigated. It is showed that when the magnetic Nanofluid is subjected to an... 

    Experimental Study of Internal Forced Convection of Ferrofluid Flow in Magnetizable Porous Media

    , M.Sc. Thesis Sharif University of Technology Keshavarz Behrghani, Mohsen (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The use of nanofluids to improve the heat transfer has a special attention in the industry. researches focus on the efficiency of heat transfer nanofluids dates back to 1998. Ferrofluids are a particular type of nanofluids which their nanoparticles have magnetic effect and heat transfer can be increased by applying magnetic field to them. In this work, thermal and hydrodynamic performance of ferromagnetic fluid which flows through a copper tube in thermal entrance region has been studied. The flow in the tube is laminar and is affected by constant heat flux. Part of the tube contains a porous medium with paramagnetic properties and porosity of 0.46. Ferrofluid is composed of F e3O4 and water... 

    Design and Implementation of Proton Precession Magnetometer

    , M.Sc. Thesis Sharif University of Technology Kamrani, Mohammad Hamed (Author) ; Fardmanesh, Mahdi (Supervisor)
    Abstract
    Proton precession magnetometers are one of the most sensitive scalar magnetic sensors. Their function is based on Zeeman effect and also nuclear magnetic resonance phenomena. In this project we have designed and implemented needed coils, swithching and signal detection circuits. Because of extremely high sensitivity of this sensor to induced noises and also gradient of earth’s magnetic fileld, detection of precession signal needs design of low noise electronic circuits with special EMC considerations. The implemented system in this project contains different blocks, such as switching circuit and its related control unit, amplifier, filter and frequency meter. Using this system, the obtained... 

    Design and Optimization of Magnetic Resonance Signal Detector to Enhancement of Sensitivity and SNR in Proton Precession Sensor

    , M.Sc. Thesis Sharif University of Technology Mazaheri Karvani, Jamal (Author) ; Fardmanesh, Mahdi (Supervisor)
    Abstract
    Proton precession is used in measurement of scalar magnetic field intensity. In this sensor, the magnetic field intensity is calculated through Larmor frequency using the proton precession frequency around the magnetic field. The accuracy of this sensor is in the range of picoTesla which is used for magnetic field measurement as well as the calibration of vector magnetic sensors. The signal to noise ratio in this sensor is due to the dimension and resistances of the wires and is a kind of RMS random noise. Although, changing the dimension of the wires for noise reduction and increasing the signal amplitude requires the fabrication of a bulky sensor with low power consumption. Therefore, it... 

    Structural and Electric Transport Properties of Lanthanum Based Manganites and Barium Based Ruthenates

    , Ph.D. Dissertation Sharif University of Technology Mazaheri, Mojtaba (Author) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The goal of this thesis is to understand the physical properties of lanthanum based manganites and barium based ruthenates. In order to obtain negative colossal magnetoresistance in manganites and fabrication of barium ruthenate in ordinary condition, the effects of variables such as ionic radii, chemical composition, temperature, magnetic field and processing in manganites and ruthenates systems are investigated. In the first part, the effects of potassium doping on structure, metalinsulator transition and magnetoresistance in )La1-yKy)0.7 Ca0.3 MnO3 and)La1-yKy)0.7 Ba0.3 MnO3 manganites systems are studied. Polycrystalline samples of manganites are synthesized by the sol‐gel method. In the... 

    System Modeling of Hydrogen Combustion And The Formation Of Plasma And Its Application In MHD Power Plant

    , M.Sc. Thesis Sharif University of Technology Hassan Moradyan, Hossein (Author) ; Sobbohi, Yadollah (Supervisor)
    Abstract
    The purpose of this project is modeling and solving equation of an open cycle system based on MHD generator in order to achiving geometrical properties of generator shuch as length and cross sections of channel and extractable electrical power. In this work hydrogen is used as initial fuel and it’s combustion product near oxygen as working fluid in an open cycle system concluding of combustion chamber, convergence nozzle, farady generator with separated electrod’s and constant mach number and also diffuser. Motion of fluid is considered one dimentional and direction of magnetic field with magnitude of 2 tesla is assumed to be perpendicular to motion and electrical current directs. For... 

    Study on The Influence of Nanoparticles and Magnetic Field on The Liquid-Liquid Mass Transfer Coefficients

    , M.Sc. Thesis Sharif University of Technology Vahedi, Amid (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    Magnetite (Fe3O4) nanoparticles were synthesized and coated with Oleic Acid using the co-precipitation method. The particles were characterized using DLS, FT-IR, SEM, XRD, VSM and UV-Vis spectrophotometry analysis. The mean size of particles was 28.8 nm and the FT-IR analysis indicated that Oleic Acid was coated suitably on the nanoparticles. The vsm test indicated no hysteresis loop for the particles, defining the superparamagnetism of them. A nanofluid containing nanoparticles in 5wt% Acetic Acid in Toluene as the base fliud was prepared. The stability of this nanofluid was determined using UV-Vis spectrophotometry to be less more then 95% in the first two hours. This nanofluid is used as...