Loading...
Search for: mass-transfer
0.008 seconds

    Immobilization of penicillin G acylase on non-porous ultrafine silica particles

    , Article Scientia Iranica ; Volume 12, Issue 3 , 2005 , Pages 295-299 ; 10263098 (ISSN) Fazelinia, H ; Kheirolomoom, A ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    In this paper, immobilization of penicillin G aclylase onto non-porous ultrafine silica particles has been studied. The amount of penicillin G acylase immobilized was increased by increasing the free enzyme concentration and, at 0.45 mg/ml concentration of the free enzyme, 80% of the enzyme was immobilized. The optimum pH for immobilization was found to be 7.0, close to the pl of the enzyme. Although immobilization of the enzyme on ultrafine silica particles with and without glutaraldehyde showed almost the same activities, the enzyme immobilized with glutaraldehyde retained its initial activity much longer during 40 cycle-repeated batches with a half life of 163.2 h. © Sharif University of... 

    Second law based optimization of falling film single tube absorption generator

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; 2002 , Pages 49-54 ; 0791836266 (ISBN); 9780791836262 (ISBN) Jani, S ; Saidi, M. H ; Heydari, A ; Mozaffari, A. A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2002
    Abstract
    The objective of this paper is to provide optimization of falling film Li/Br solution on a horizontal single tube based on minimization of entropy generation. Flow regime is considered to be laminar, the effect of boiling has been ignored and wall temperature is constant. Velocity, temperature and concentration distributions are numerically determined and dimensionless correlations are obtained for predicting the average heat transfer coefficient and average evaporation factor on the horizontal tube. Thermodynamic imperfection due to passing lithium bromide solution is attributed to non-isothermal heat transfer; fluid flow friction and mass transfer irreversibility. Scale analysis shows that... 

    A new method for calculating laser intensity distribution on workpiece surface in laser-directed energy deposition process by considering powder stream distribution and laser attenuation

    , Article International Journal of Advanced Manufacturing Technology ; Volume 121, Issue 1-2 , 2022 , Pages 337-348 ; 02683768 (ISSN) Sobhanieh, N ; Akbari, J ; Moradi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Laser-directed energy deposition is a fast-growing method for manufacturing complex geometries and materials that are hard to shape with conventional manufacturing methods. However, there are some aspects of this process that need more researches and experiments to be completely understood. Two of these are laser attenuation and laser intensity distribution on the workpiece surface. In this paper, a new method is proposed for calculating laser attenuation without simplification applied in previous works. Despite other studies that consider a predefined powder distribution, the result of a developed 3D CFD model of the powder stream is utilized for defining the position of particles in the... 

    Observational comparative study in Kühni and ORC agitated columns for the mechanism and performance of molybdenum extraction under various hydrodynamic conditions

    , Article International Journal of Heat and Mass Transfer ; Volume 185 , 2022 ; 00179310 (ISSN) Shakib, B ; Torkaman, R ; Torab-Mostaedi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present work is expressed to interpret the hydrodynamic parameters of rotation extraction columns in the reactive and non-reactive systems. The solvent extraction technique has been utilized for optimizing the transportation of molybdenum ions to the organic phase in two agitated columns (ORC and Kühni columns). Dispersed phase volume fraction, average droplet diameter, slip velocity, size distribution, and ions permeability of the aqueous phase have been investigated in terms of changing the operational variables including the agitation rate, flow rate of the inlet dispersed and continuous phases, column geometry, and reaction conditions. By considering the reactive and non-reactive... 

    Design of the micropump and mass-transfer compartment of a microfluidic system for regular nonenzymatic glucose measurement

    , Article Biotechnology Reports ; Volume 34 , 2022 ; 2215017X (ISSN) Najmi, A ; Saidi, M. S ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The aim of this paper is to design and numerically simulate the mass-transfer compartment and piezoelectric micropump of an implantable integrated microfluidic device for regular microdialysis-based nonenzymatic measurement of glucose level in diabetic patients. The device function is based on the process that the piezoelectric micropump pumps the dialysis fluid into the mass-transfer compartment microchannels, where the interstitial fluid (ISF) glucose diffusion into this dialysis fluid gives it a glucose content, then detected and measured in the sensor section. This diffusion takes place through the semipermeable membranes located in the microchannels at the base of the hollow... 

    Experimental investigation of constant and concentration-dependent diffusivity of a hydrocarbon solvents-heavy oil system: A comparative study

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 34, Issue 3 , 2011 , Pages 235-245 ; 15567036 (ISSN) Nasirahmadi, E ; Kharrat, R ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    This work is concerned with the experimental investigation of mass transfer, which occurs during diffusion of hydrocarbon solvents in heavy oil based on constant and concentration-dependent diffusion coefficient. Here, a series of free fall diffusion experiments have been conducted in sealed test tubes at fixed temperatures. Pentane, hexane, and octane were used as solvents and were placed on heavy oil in tubes. The diffusivity of heavy oil into solvents was monitored by a digital camera. The image analysis technique was applied to extract concentration profiles in diffusion zones of solvents by means of calibration curves. Fick's second law was used to obtain both constant and... 

    Simultaneous separation of H2S and CO2 from natural gas by hollow fiber membrane contactor using mixture of alkanolamines

    , Article Journal of Membrane Science ; Volume 377, Issue 1-2 , July , 2011 , Pages 191-197 ; 03767388 (ISSN) Hedayat, M ; Soltanieh, M ; Mousavi, S. A ; Sharif University of Technology
    2011
    Abstract
    In the present work we studied the use of a membrane contactor system for simultaneous absorption of H2S and CO2 from a gas mixture similar to natural gas. MDEA solution and mixtures of MDEA/DEA and MDEA/MEA were used as absorbent liquid. PVDF and PSf hollow fiber membranes were used in the membrane contactor modules. Design of experiments were carried out by Taguchi method in a manner that a systematical investigation of the effect of operational parameters (temperature, pressure, gas and liquid flow rates, absorbent concentration and acid gas content of the feed), in addition to the effect of membrane material and absorbent liquid, was implemented on process performance parameters... 

    Retarding effect of contaminants on the performance of a two-impinging-jets liquid-liquid extraction contactor

    , Article Chemical Engineering and Technology ; Volume 33, Issue 6 , June , 2010 , Pages 1003-1010 ; 09307516 (ISSN) Saien, J ; Doghahe, S. A. O ; Dehkordi, A. M ; Sharif University of Technology
    2010
    Abstract
    In industrial liquid-liquid extraction processes, the feed is not clean liquid but there are various kinds of contaminants in the feed entering the extractors. In this regard, a two-impinging-jets contacting device (TIJCD) was tested through the standard test system recommended by the European Federation of Chemical Engineering (EFCE), namely toluene-acetone-water, in the presence and absence of various types of surface-active agents (SAAs). The influences of anionic, cationic, and nonionic SAAs such as sodium dodecyl sulfate (SDS), dodecyl trimethyl ammonium chloride (DTMAC), and octylphenol decaethylene glycol ether (Triton X-100), respectively, on the extraction efficiency and overall... 

    Silane–based modified papers and their extractive phase roles in a microfluidic platform

    , Article Analytica Chimica Acta ; Volume 1128 , 2020 , Pages 31-41 Hashemi Hedeshi, M ; Rezvani, O ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Herein, some (modified) paper–based substrates were prepared and utilized as extractive phases in a microfluidic device and their extraction performances examined for analytes with different polarities. Reagents including hexadecyltrimethoxysilane (HDTMS), phenyltrimethoxysilane (PTES), (3-aminopropyl) triethoxysilane (APTES) and 3–(2,3–epoxypropoxy) propyltrimethoxysilane (EPPTMOS) were implemented for the modification process. Due to the induction of different silane functional groups, it was anticipated to have various interactions for the tested analytes. Eventually, the prepared paper sheets were used as extractive phases for solid–phase extraction within a microfluidic system. The... 

    Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media

    , Article Journal of Contaminant Hydrology ; Volume 228 , November , 2020 Khasi, S ; Ramezanzadeh, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Practical designs of non-aqueous phase liquids (NAPLs) remediation strategies require reliable modeling of interphase mass transfer to predict the retraction of NAPL during processes such as dissolution. In this work, the dissolution process of NAPL during two-phase flow in heterogeneous porous media is studied using pore-network modeling and micromodel experiments. A new physical-experimental approach is proposed to enhance the prediction of the dissolution process during modeling of interphase mass transfer. In this regard, the normalized average resident solute concentration is evaluated for describing the dissolution process at pore-level. To incorporate the effect of medium... 

    Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review

    , Article Journal of Environmental Management ; Volume 313 , 2022 ; 03014797 (ISSN) Tavakoli, A ; Rahimi, K ; Saghandali, F ; Scott, J ; Lovell, E ; Sharif University of Technology
    Academic Press  2022
    Abstract
    In recent years, the importance of capturing CO2 has increased due to the necessity of minimizing climate change and the detrimental effects of CO2 emissions from industrial processes. CO2 absorption, as one of the most mature carbon capture technologies, has been improved by introducing nanosized particles into liquid absorbents. Nanofluids have been the subject of interest in many studies recently due to their tremendous impact on absorption. This review comprehensively examines the CO2 absorption behavior for nanofluids through the investigation of different absorption systems. Potential mechanisms for improving the absorption/regeneration performance of nanoabsorbents as well as the... 

    Delafossite-alumina nanocomposite for enhanced catalytic wet peroxide oxidation of anionic pollutants

    , Article Journal of Hazardous Materials ; Volume 417 , 2021 ; 03043894 (ISSN) Nazari, P ; Nouri, O ; Xie, Z ; Setayesh, S. R ; Wei, Z ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Mass transfer efficiency and catalytic reactivity are the two major hurdles for heterogeneous catalytic wet peroxide oxidation (CWPO) technologies. To address these issues, nanocomposite CuFeO2/Al2O3 was synthesized and assessed as a novel catalyst for enhanced adsorption and oxidation of anionic pollutants (catechol and reactive red 195 (RR195)) in waters. With a positive charge on the nanocomposite by introducing Al2O3, the adsorption of anionic pollutants was promoted. The surface complexation reaction on CuFeO2/Al2O3, which fits well to the Langmuir isotherm, has engined the mass transfer of pollutants to the nanocatalyst that demonstrated 96.46% and 99.75% removal of catechol and RR195... 

    Characterization of Micromixing and Determination of Mass-Transfer Coefficient in a new Double-Spinning-Disk Contactor

    , M.Sc. Thesis Sharif University of Technology Mirzaei, Mohammad Ali (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    High mixing efficiency and high liquid-liquid mass transfer rate are two key features of spinning disk contactors. This work presents the experimental investigation of mixing and liquid-liquid mass transfer characteristics in a new double coaxial spinning disks contactor. The micromixing efficiency was investigated using a standard system of competitive parallel reaction known as iodide/iodate test reaction. The influences of various operating conditions such as the rotational speed of the disks, the direction of rotation, the feed radial location, the feed distribution pattern, the distance between the disks, and the feed flow rate on the mixing quality were examined carefully. The obtained... 

    Experimental and Numerical Investigation on the Single Drop Liquid-liquid Mass Transfer in the Presence of Magnetic Nano-particles (Ferrofluids) and Magnetic Field

    , Ph.D. Dissertation Sharif University of Technology Memari, Mohammad (Author) ; Molaie Dehkordi, Asghar (Supervisor) ; Seif Kordi, Ali Akbar (Co-Supervisor)
    Abstract
    The main objective of the present work was to improve the turbulence in single drops using ferrofluids (magnetic nanoparticles) in the presence of uniform and oscillating magnetic fields. In this regard, magnetite nanoparticles ($\mathrm{Fe_3O_4}$) were synthesized by co-precipitation method, characterized using DLS, FT-IR, XRD, VSM, and TEM, and their stability was checked by UV-Vis. The obtained results indicate the proper synthesis of nanoparticles with a mean diameter of about 20 nm and by coating their surfaces by silane that were well stabilized in the base fluid. In the numerical section, the governing equations of transport phenomena for a single drop containing magnetic fluids were... 

    Electrokinetic Flow in pH-Regulated Solid-State/Soft Micro-Nanochannels

    , Ph.D. Dissertation Sharif University of Technology Sadeghi, Morteza (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Mousavi, Ali (Co-Supervisor) ; Sadeghi, Arman (Co-Supervisor)
    Abstract
    In recent years, advances have been made in the field of miniaturization of the devices (in order to increase their efficiency, lessen the materials needed for the constructions and experiments, reduce costs and energy usage) resulting in the dramatic increase of surface to volume ratio in these devices. This progress has led to the dominance of surface forces which can be used to control very important interface phenomena having a special application such as electrokinetic. Using today’s manufacturing technology; it is possible to construct micro-nanochannels made from different materials such as silicon, glass, quartz, polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA) whose... 

    Preparation and characterization of SAPO-34 nanoparticles-mixed matrix membranes (MMM) via combined phase separation method for CO2/CH4 gas separation application

    , Article Technical Proceedings of the NSTI Nanotechnology Conference and Expo, NSTI-Nanotech ; Vol. 1 , 2014 , pp. 253-256 ; ISBN: 9781482258264 Jahanbakhsh Asl, H ; Soltanieh, M ; Azadi, R ; Sharif University of Technology
    Abstract
    Phase separation is one of the common methods for fabrication of polymeric membrane, which classifies into the categories of Thermally Induced Phase Separation (TIPS) and Nonsolvent Induced Phase Separation (NIPS), i.e. heat and mass transfer induced phase separation, respectively. NIPS has been applied more commonly than TIPS, but the membranes which have resulted from this technique have macro finger-like voids, weak mechanical strength and not high separation ability in comparison with the TIPS. In contrast, membranes produced by the TIPS method have micro scale pores, high mechanical strength and also high separation capability, however, polymeric solutions prepared at high temperatures... 

    Transient response of buried oil pipelines fiber optic leak detector based on the distributed temperature measurement

    , Article International Journal of Heat and Mass Transfer ; Volume 65 , 2013 , Pages 110-122 ; 00179310 (ISSN) Mirzaei, A ; Bahrampour, A. R ; Taraz, M ; Bahrampour, A ; Bahrampour, M. J ; Ahmadi Foroushani, S. M ; Sharif University of Technology
    2013
    Abstract
    Oil leakage of transportation pipelines causes a change in its environmental temperature. This effect is employed to detect the leakage and its positions. The Raman Optical Time Domain Reflectometer (ROTDR) and Brillouin Optical Time Domain Amplifier (BOTDA) sensors are two of the most precise oil pipeline leak detector systems operate based on this effect. The position of leakage is determined by the time difference between the sending and backscattered laser pulses. In this paper, the transient response of BOTDA and ROTDR sensors are obtained through solution of the mass, energy and heat transfer in soil and fiber cable. It is shown that the mechanical rise time is of the order of a few... 

    Performance study of an inlet in supersonic flow

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 1 , 2013 , Pages 159-174 ; 09544100 (ISSN) Soltani, M. R ; Farahani, M ; Sharif University of Technology
    2013
    Abstract
    The performance characteristics of an axisymmetric inlet at its design and off-design operational conditions are experimentally investigated. The model is tested for wide ranges of free stream Mach numbers, M∞ = 1.5-2.5, and mass flow rates. For each test, the pressure recovery, the mass flow passing through the inlet and the pressure distribution over the spike and the cowl are measured. In addition, the shock wave formed in front of the inlet is visualized. The characteristic curve of the inlet is then obtained for each free stream Mach number. As the Mach number is increased, the pressure recovery is reduced, but the maximum value of the mass flow rate grows up. Variations of the mass... 

    Experimental investigation of an open loop pulsating heat pipe using ferrofluid

    , Article ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012 ; 2012 , Pages 175-184 ; 9780791854778 (ISBN) Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Saimak, K. H ; Sharif University of Technology
    Abstract
    The present work investigates the thermal performance of a five turn Open Loop Pulsating Heat Pipe (OLPHP). The effects of working fluid namely water and ferrofluid, heat input, ferrofluid concentration, charging ratio, and orientation will be considered. Experimental results show that using ferrofluids can enhance the thermal performance in comparison with the case of distilled water. In addition, applying a magnetic field on the OLPHP charged with ferrofluid reduces its thermal resistance. Variation of the ferrofluid concentration results in different thermal performance of the OLPHP. Best charging ratio for the distilled water and ferrofluid without magnetic field is 60 % in most of the... 

    Reaction kinetics determination and neural networks modeling of methanol dehydration over nano γ-Al 2O 3 catalyst

    , Article Journal of Industrial and Engineering Chemistry ; Volume 18, Issue 6 , 2012 , Pages 2059-2068 ; 1226086X (ISSN) Alamolhoda, S ; Kazemeini, M ; Zaherian, A ; Zakerinasab, M. R ; Sharif University of Technology
    2012
    Abstract
    In this research nano γ-Al 2O 3 catalyst was synthesized through precipitation process then characterized and utilized for methanol dehydration reaction in a slurry batch reactor in route to the indirect synthesis of the dimethyl ether (DME). In this venue, effects of the key parameters on methanol conversion and catalyst stability were investigated. Moreover, the internal and external mass transfer resistances were eliminated; hence the intrinsic kinetics controlled the reaction. Therefore, the optimum conditions for temperature, methanol concentration, catalyst mass and stirrer speed were determined to be 300°C, 1.18mol/l, 1.5g and 1100rpm, respectively. Next, different reaction rate...