Loading...
Search for: mass-transfer-coefficient
0.011 seconds
Total 41 records

    Performance evaluation during extraction technique in modified rotating disc column: Experimental and mathematical modeling

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 171 , 2022 ; 02552701 (ISSN) Shakib, B ; Torkaman, R ; Torab Mostaedi, M ; Saremi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this survey, the reactive mass transfer data are determined for extraction technique in the modified rotating disc column. Mathematical models are investigated to compute the mass transfer coefficients of the dispersed phase. An increase in the dispersed phase holdup from 0.85 to 0.12 and a decrease in droplet diameter from 2.24 to 0.74 mm are observed with increasing rotation speed from 170 to 410 rpm in the optimized system. The experiments showed that the optimum transport efficiency in rotor speed of 410 rpm in this column is equal to 98.85% and 99.45% for extraction and stripping stages, respectively. The model's achievement is compared with the solvent extraction data and a... 

    Numerical modeling of incline plate LiBr absorber

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 47, Issue 3 , November , 2011 , Pages 259-267 ; 09477411 (ISSN) Karami, S ; Farhanieh, B ; Sharif University of Technology
    2011
    Abstract
    Among major components of LiBr-H 2O absorption chillers is the absorber, which has a direct effect on the chillier size and whose characteristics have significant effects on the overall efficiency of absorption machines. In this article, heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled incline plate absorber in the Reynolds number range of 5

    Model for excess mass-transfer resistance of contaminated liquid-liquid systems

    , Article Industrial and Engineering Chemistry Research ; Volume 46, Issue 5 , 2007 , Pages 1563-1571 ; 08885885 (ISSN) Molaei Dehkordi, A ; Ghasemian, S ; Bastani, D ; Ahmadpour, N ; Sharif University of Technology
    2007
    Abstract
    The prediction of mass-transfer rates into and from moving drops in the liquid-liquid systems has usually used the well-known Whitman two-film theory approach. According to the latter, the total resistance to mass transfer resides on each side of the interface and is described by the individual film mass-transfer coefficients for the continuous and dispersed phases in the absence of surface-active agents (contaminants). In the present work, the same approach has been used to model the excess mass-transfer resistance exerted by surface-active agents in the continuous phase. To achieve this goal, an experimental investigation has been conducted on the mass transfer into and from single drops... 

    Mass transfer evaluation in a multi-impeller extractor for reactive Mo (VI) extraction from aqueous Sulphate solution by utilizing coupling of acid and solvating Extractants

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 56, Issue 6 , 2020 , Pages 1995-2006 Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Asadollahzadeh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    In this study, mass transfer experimental data from the present column with 70 cm active column length and 11.3 cm internal diameter were interpreted for molybdenum extraction with a mixture of D2EHPA and TBP in terms of the axial diffusion model. The influence of extractants concentration and the initial aqueous pH have studied in the bench-scale experiments. The experimental finding demonstrated that the synergistic solvent extraction increases the constancy of the extracted complexes for transfer into the organic phase. The effect of operating parameters, including agitation speed and inlet phase velocities on the overall mass transfer coefficients under the chemical reaction system, is... 

    Mass-transfer enhancement in single drop extraction in the presence of magnetic nanoparticles and magnetic field

    , Article AIChE Journal ; Volume 62, Issue 12 , 2016 , Pages 4466-4479 ; 00011541 (ISSN) Vahedi, A ; Molaei Dehkordi, A ; Fadaei, F ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Magnetite nanoparticles with an average particle size of 28.8 nm were synthesized, coated with oleic acid, and characterized using various techniques such as DLS, FT-IR, SEM, XRD, VSM, and UV-Vis analysis. A nanofluid consisting of synthesized nanoparticles and 5 wt % acetic acid in toluene as the dispersed phase was prepared and used in the chemical test system, Toluene-Acetic Acid-Water, for the single drop extraction in the presence and absence of an external oscillating magnetic field. Influences of various operating and design parameters such as nanoparticle concentration, drop diameter, and the applied current and frequency on the overall mass-transfer coefficients for the... 

    Mass transfer during drop formation on the nozzle: New flow expansion model

    , Article AIChE Journal ; Volume 52, Issue 3 , 2006 , Pages 895-910 ; 00011541 (ISSN) Javadi, A ; Bastani, D ; Taeibi Rahni, M ; Sharif University of Technology
    2006
    Abstract
    An attempt was made to introduce a new approach for evaluating mass transfer during drop formation via definition of a parameter related to the extent of the convective mixing within the growing drop. For this purpose it was assumed that the entrance of the dispersed flow into the growing drop from the nozzle is analogous to the entrance of the flow from a smaller channel to a larger one. This transfer mechanism has been dubbed the "flow expansion." A global time-dependent Reynolds number of growing drop (Regd) was defined based on the equivalent diameter of growing drop as a length scale and also on a velocity scale, which is obtained using this flow expansion assumption. The results show... 

    Mass transfer coefficients of extracting Mo (VI) and W (VI) in a stirred tank by solvent extraction using mixture of Cyanex272 and D2EHPA

    , Article Separation Science and Technology (Philadelphia) ; 2019 ; 01496395 (ISSN) Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Asadollahzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, the mass transfer evaluation of an agitated liquid-liquid system for the extraction of molybdenum and tungsten from aqueous sulfate solution was investigated. It was found from batch experiments for separation of molybdenum from tungsten that the initial aqueous pH, Cyanex272 and D2EHPA concentration, contact time, dispersed phase volume fraction and impeller speed were optimized at 1.3, 0.07 M, 0.29 M, 15 min, 0.09 and 280 rpm, respectively. The results indicate that a suitable composition for stripping is 1.5 M NH4OH and 0.6 M NH4F. Furthermore, a modified correlation based on dimensionless numbers was derived for the prediction of continuous phase mass transfer in the... 

    Mass transfer coefficients of extracting Mo (VI) and W (VI) in a stirred tank by solvent extraction using mixture of Cyanex272 and D2EHPA

    , Article Separation Science and Technology (Philadelphia) ; Volume 55, Issue 17 , 2020 , Pages 3140-3150 Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Asadollahzadeh, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    In this study, the mass transfer evaluation of an agitated liquid-liquid system for the extraction of molybdenum and tungsten from aqueous sulfate solution was investigated. It was found from batch experiments for separation of molybdenum from tungsten that the initial aqueous pH, Cyanex272 and D2EHPA concentration, contact time, dispersed phase volume fraction and impeller speed were optimized at 1.3, 0.07 M, 0.29 M, 15 min, 0.09 and 280 rpm, respectively. The results indicate that a suitable composition for stripping is 1.5 M NH4OH and 0.6 M NH4F. Furthermore, a modified correlation based on dimensionless numbers was derived for the prediction of continuous phase mass transfer in the... 

    Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: An optimized separation approach

    , Article Chemical Engineering Journal ; Volume 334 , 2018 , Pages 2603-2615 ; 13858947 (ISSN) Foroozan Jahromi, P ; Karimi Sabet, J ; Amini, Y ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this research, a continuous microsolvent extraction-reaction was developed for the efficient separation of calcium ion. This study gives a preliminary possible practical application of microfluidic devices in chemical exchange reaction for enrichment of 48Ca stable isotope. For this purpose, in the first stage, the hydrodynamic behavior of two immiscible liquids in a simple Y-shaped microfluidic junction is experimentally investigated, and then ion-pair extraction-reaction of Ca2+ using picric acid as a counter-ion and dicyclohexano-18-crown-6 (DC18C6) as a lipophilic ionophore is studied in this microfluidic and conventional batch method. The impact of main process parameters, including... 

    Investigation the effect of super hydrophobic titania nanoparticles on the mass transfer performance of single drop liquid-liquid extraction process

    , Article Separation and Purification Technology ; Volume 176 , 2017 , Pages 107-119 ; 13835866 (ISSN) Hatami, A ; Bastani, D ; Najafi, F ; Sharif University of Technology
    Abstract
    Hydrophobic titania nanoparticles were synthesized by a novel in situ sol-gel method and applied in a single drop liquid-liquid extraction column to enhance the overall dispersed-phase mass transfer coefficient (Kod). The chemical system of toluene, acetic acid and water was used, and the direction of solute (acetic acid) mass transfer was from dispersed phase, including: toluene and acetic acid to the continuous phase of water. For such system, much of the mass transfer resistance exists in the dispersed phase, which is nonpolar organic liquid. Hence, modified titania nanoparticles (MTNP's), prepared by sol-gel route, in five different concentrations of 0.001–0.005 wt.% were added in the... 

    Investigation on reactive flow through porous media by quadtree Lattice Boltzmann

    , Article Journal of Natural Gas Science and Engineering ; Volume 104 , 2022 ; 18755100 (ISSN) Mahmoudi, S ; Ayatollahi, S ; Jamshidi, S ; Raoof, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, in order to investigate the effect of the underlying pore-scale processes on continuum scale simulations of porous media dissolution, we improve the standard Lattice Boltzmann method using Quadtree grid refinement approach to simulate fluid flow and reactive transport through large domain sizes. Our results have shown considerable computational improvements up to 80% in simulation time together with increased numerical accuracy. The results and the added value of the new approach are discussed using comparison of our model with the conventional LBM. Moreover, we have applied a systematic analysis by increasing complexity levels and starting from fluid flow and continuing with... 

    Investigation of mass transfer coefficient under jetting conditions in a liquid-liquid extraction system

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 29, Issue 1 , 2010 , Pages 1-12 ; 10219986 (ISSN) Nosratinia, F ; Omidkhah, M. R ; Bastani, D ; Saifkordi, A. A ; Sharif University of Technology
    Abstract
    In this research mass transfer coefficient under jetting regime in different directions (from dispersed to continuous and continuous to dispersed phase) has been studied using an experimental setup. n-Butanol-succinic acid-water with low interfacial tension has been selected as experimental chemical system. The effects of various parameters such as jet velocity, nozzle diameter and the height of the continuous phase above the nozzle, on mass transfer coefficient have been investigated. A correlation has also been derived in order to predict the mass transfer coefficient as a function of physical properties of both phases and aforementioned parameters. Based on the experimental results, mass... 

    Infrared thin layer drying of saffron (Crocus sativus L.) stigmas: Mass transfer parameters and quality assessment

    , Article Chinese Journal of Chemical Engineering ; 2016 ; 10049541 (ISSN) Torki Harchegani, M ; Ghanbarian, D ; Maghsoodi, V ; Moheb, A ; Sharif University of Technology
    Chemical Industry Press 
    Abstract
    Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass transfer parameters of saffron stigmas is available in the literature. This study aimed at investigating the moisture transfer parameters and quality attributes of saffron stigmas under infrared treatment at different temperatures (60, 70, ..., 110°C). It was observed that the dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period. The effective moisture diffusivity and convective mass transfer coefficient were... 

    Infrared thin layer drying of saffron (Crocus sativus L.) stigmas: Mass transfer parameters and quality assessment

    , Article Chinese Journal of Chemical Engineering ; Volume 25, Issue 4 , 2017 , Pages 426-432 ; 10049541 (ISSN) Torki Harchegani, M ; Ghanbarian, D ; Maghsoodi, V ; Moheb, A ; Sharif University of Technology
    Chemical Industry Press  2017
    Abstract
    Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass transfer parameters of saffron stigmas is available in the literature. This study aimed at investigating the moisture transfer parameters and quality attributes of saffron stigmas under infrared treatment at different temperatures (60, 70, …, 110 °C). It was observed that the dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period. The effective moisture diffusivity and convective mass transfer coefficient were... 

    Gas absorption enhancement in hollow fiber membrane contactors using nanofluids: Modeling and simulation

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 7-15 ; 02552701 (ISSN) Darabi, M ; Rahimi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, a comprehensive 2D mathematical model has been developed to simulate process intensification of carbon dioxide absorption in the presence of nanoparticles in hollow fiber membrane contactors (HFMCs). The influences of nanoparticle were taken into account considering Brownian motion and Grazing effect as dominant phenomena of mass-transfer enhancement in nanofluids. The obtained simulation results were validated against experimental data reported in the literature and excellent agreement was obtained. It was found that by adding 0.05 wt % silica nanoparticles, the absorption rate could be enhanced by 16%, while the corresponding value is 32% for CNT nanoparticles. High... 

    Experimental study and correlation for mass transfer coefficient in the pilot plant multistage column with the presence of molybdenum

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 41, Issue 2 , 2022 , Pages 544-554 ; 10219986 (ISSN) Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Torkaman, R ; Asadollahzadeh, M ; Sharif University of Technology
    Iranian Institute of Research and Development in Chemical Industries  2022
    Abstract
    In the present work, multistage extraction column performance for reactive separation of molybdenum from the leach aqueous phase by using D2EHPA and TBP in kerosene was investigated by using the axial diffusion model. The variation of volumetric overall mass transfer coefficients based on continuous phases at various operating conditions was obtained. By considering the chemical reaction conditions, the experimental data indicate that the volumetric overall mass transfer coefficients increase with an enhancement in rotor speed and continuous and dispersed phase flow rates. According to the sensitivity analysis, the rotor speed and flow rate of the dispersed phase have more influence on... 

    Estimation of mass transfer during drop formation: New flow expansion model

    , Article 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE, Anaheim, CA, 13 November 2004 through 19 November 2004 ; 2004 , Pages 27-34 ; 0791847179 (ISBN); 9780791847176 (ISBN) Javadi, A ; Bastani, D ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    Although there is extensive experimental, theoretical and numerical research on dynamics of drop formation in liquid-liquid systems, the evaluation of mass transfer during drop formation is rather complex and there has been little research on that. The various mathematical models developed for this problem are generally based on a solution of the diffusion equation without any allowance for circulation within the drop. This is the main reason for the poor prediction of these models in many cases for which internal convection has an important effect on mass transfer rate. In this paper an attempt was made to define a parameter related to the extent of the convective mixing within the growing... 

    Effects of contaminants on the mass-transfer characteristics of a two-impinging-streams gas-liquid reactor

    , Article Chemical Engineering and Technology ; Volume 34, Issue 11 , 2011 , Pages 1797-1806 ; 09307516 (ISSN) Dehkordi, A. M ; Savari, C ; Sharif University of Technology
    Abstract
    The mass-transfer characteristics of a new type of two-impinging-streams reactor (TISR) was studied by means of sodium sulfite solution as the liquid phase and air as the gas phase, in the presence and absence of various types of surface-active agents (SAAs). The influences of anionic, cationic, and nonionic SAAs on the specific interfacial area and overall volumetric mass-transfer coefficient obtained in the TISR were investigated. It was found that the presence of a little amount of the above-mentioned contaminants increases the specific interfacial area and decreases the overall volumetric mass-transfer coefficient. On the basis of the experimental results obtained for various types of... 

    Combined model of mass-transfer coefficients for clean and contaminated liquid-liquid systems

    , Article Industrial and Engineering Chemistry Research ; Volume 50, Issue 8 , 2011 , Pages 4608-4617 ; 08885885 (ISSN) Haghdoost, A ; Dehkordi, A. M ; Darbandi, M ; Shahalami, M ; Saien, J ; Sharif University of Technology
    Abstract
    Mass-transfer rates to and from drops in liquid-liquid extraction processes are often reduced by the presence of contaminants. To design an industrial extractor, it is essential to consider this contamination effect in a quantitative manner. To achieve this goal, an experimental investigation was conducted on the mass transfer into single drops for n-butanol-succinic acid-water, as the recommended test system by the European Federation of Chemical Engineering (EFCE). The effects of anionic (sodium dodecyl sulfate, SDS), cationic (dodecyl trimethyl ammonium chloride, DTMAC), and nonionic (octylphenol decaethylene glycol ether, Triton X-100) surfactants on the hydrodynamic and mass-transfer... 

    A numerical study on the absorption of water vapor into a film of aqueous LiBr falling along a vertical plate

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 46, Issue 2 , 2009 , Pages 197-207 ; 09477411 (ISSN) Karami, S ; Farhanieh, B ; Sharif University of Technology
    Abstract
    Absorber is an important component in absorption machines and its characteristics have significant effects on the overall efficiency of absorption machines. This article reports a model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water - cooled vertical plate absorber in the Reynolds number range of 5 < Re < 150. The boundary layer assumptions were used for the transport of mass, momentum and energy equations and the fully implicit finite difference method was employed to solve the governing equations in the film flow. Dependence of lithium bromide aqueous properties to the temperature and concentration and film...