Loading...
Search for: metal
0.03 seconds
Total 1763 records

    Design of an Optoelectronic Tongue Based on Anti-Aggregation of Gold Nanoparticles for Detection and Classification of Heavy Metal Ions

    , M.Sc. Thesis Sharif University of Technology Najafzadeh, Fatemeh (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor)
    Abstract
    The first report of anti-aggregation-based sensor arrays is presented. The strategy is based on the competitive interaction of citrate-capped gold nanoparticles (AuNPs) and heavy metal ions (i.e., Hg(II), Ag(I), Fe(III), and Pb (II)) with three aggregation reagents (i.e., cysteine, melamine, and arginine). In the presence of aggregation reagent,the color and UV–vis spectra of AuNPs are changed indicating the aggregation ofAuNPs. Addition of the aggregation reagents which are firstly treated with the ions, causes AuNPs turn from the aggregation to the dispersion state. The anti-aggregation capability of ions towards various aggregation reagents is different because of distinct stability... 

    Design of a Wide Band phase Shifter Based on Vector Summing

    , M.Sc. Thesis Sharif University of Technology Nobakht Sarkeze, Mostafa (Author) ; Atarodi, Mojtaba (Supervisor) ; Safarian, Amin Gasem (Co-Advisor)
    Abstract
    Phase shifters are commonly used in the implementation of phased-array antenna systems.The function of these systems is highly dependent on the performance of phase shifters. In addition, phase shifter circuits are used in some applications such as antenna test and regulation, power amplifier linearization, and QAM modulator implementation, to name but a handful. In this project, design of phase shifter blocks, as well as limitations of fabrication on silicon substrate, is studied and these blocks are designed for maximum bandwidth and minimum sensitivity based on fabrication characteristics and environmental conditions. Design of a 6-bit phase shifter based on vector-sum method is the... 

    Design of a Phase Shifter Based on Vector Summing

    , M.Sc. Thesis Sharif University of Technology Vasfi Burachaloo, Saeed (Author) ; Atarodi, Mojtaba (Supervisor)
    Abstract
    Phase shifters are commonly used in the implementation of phased-array antenna systems.The function of these systems is highly dependent on the performance of phase shifters. In addition, phase shifter circuits are used in some applications such as antenna test and regulation, power amplifier linearization, and QAM modulator implementation, to name but a handful. In this project, design of phase shifter blocks, as well as limitations of fabrication on silicon substrate, is studied and these blocks are designed for maximum bandwidth and minimum sensitivity based on fabrication characteristics and environmental conditions. Design of a 6-bit phase shifter based on vector-sum method is the... 

    Design of a Low-power Receiver in Bluetooth Low-energy Standard

    , M.Sc. Thesis Sharif University of Technology Rahmanian Kooshkaki, Hossein (Author) ; Fotowat Ahmady, Ali (Supervisor)
    Abstract
    One of the most important parameters of a smartphone is the ability to operate in a long time with a rechargeable battery. As a result, the design of radio frequency circuits which are used in these cell phones is a consistent challenge for designers. Bluetooth Low-Energy standard (BLE) which is the fourth edition of Bluetooth standard is recently introduced with the aim of transporting low volume data with minimum power consumption. The most important challenge of the design of an RF receiver in the BLE standard is the power consumption. In a typical receiver, the oscillator and the mixer are the most power hungry blocks. Therefore, decreasing the power consumption of these two blocks is... 

    Design of CMOS DPS based on Non-Linear Current Source

    , M.Sc. Thesis Sharif University of Technology Shaker Shiran, Dariush (Author) ; Haj Sadeghi, Khosrow (Supervisor)
    Abstract
    Few years ago, when people were talking about image sensors, the minds were automatically focusing on the pictures and photos that were/are taken for recording the memories. Nowadays, however, image sensors have prominent and unbelievable role in different aspects of our life, which "image" is only representing part of this role. A wide variety of applications image sensors can be enumerated such as, Scientific, security, medical, machine vision, ITs, biometrics, automotive, etc. To evaluate the quality of an image sensor, there are different parameters, from the dynamic range, high resolution and suitable speed to low noise, low power consumption and other parameters. The art of companies... 

    Design of a 2x2 MIMO Array Front-End for 5G Applications in CMOS Technology

    , M.Sc. Thesis Sharif University of Technology Khademi Sharifabad, Sepehr (Author) ; Fakharzadeh Jahromi, Mohammad (Supervisor)
    Abstract
    This thesis presents a four-antenna phased-array transceiver front-end for 5G applications. The designed front-end uses RF architecture and time division duplexing mode and operates in the 26~30 (GHz) band. In our design procedure, we have used a four-stage inductively degenerated common source LNA, a differential three-stage PA, and a vector-sum phase shifter. Circuit blocks are connected using traditional architecture, and an SPDT switch is used to determine the Tx/Rx mode of the system. A switching current reference is designed, which enables us to control the circuit gain over different process corners and temperatures.Each transmitter chain produces 13.42 (dBm) power at its operating... 

    Design and Implementation of X Band CMOS Vector Modulator

    , M.Sc. Thesis Sharif University of Technology Arjmandpour, Sina (Author) ; Medi, Ali (Supervisor) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In this thesis, an X band vector modulator chip in CMOS .18 um technology is designed, implemented and measured. The receiver with two RF signal path includes differential amplifier, hybrid, attenuaters, variable gain amplifiers (VGA) and power combiner blocks respectively. Capability of gain and phase control is provided by 14 digital bit. 6 bits are used to control gain of each RF path, so that changing the phase and gain of the output signal in a trigonometric quarter shall be possible. The trigonometric quarter is selected by two single pole double throw switch. Cascode structure is utilized in amplifiers stages for its stability and isolation feature. Furthermore, in order to to enhance... 

    Design and Implementation of Ka-band SPDT Switch for Array Antenna Beam Steering

    , M.Sc. Thesis Sharif University of Technology Amjadian, Mohammad Reza (Author) ; Fakharzadeh, Mohammad (Supervisor)
    Abstract
    In this thesis, study the design of a compact low-cost integrated time modulated array(TMA). In TMAs, a switch is used instead of a phase shifter, which reduces the area, complexity, power consumption and the final price of the array. The TMAs uses the switch as a control element for array weighting that causes beamforming and beam steering. For the lower cost, designed IC compacted as small as possible and use inexpensive CMOS 180nm technology of TSMC fabrication. Initially, maximum layout size forced 0.7 by 1.5 mm2. The proposed switch type is SPDT that one of its output paths terminated by a matched load and another end to a pad and then by a bond wire connected to an external board that... 

    Design and Implementation of an Integrated Power Amplifier for MM-wave Imaging

    , M.Sc. Thesis Sharif University of Technology Mostafavi, Masoud (Author) ; Fakharzadeh Jahromi, Mohammad (Supervisor)
    Abstract
    In this thesis, the design of a fully-integrated Millimeter-wave Broadband power amplifier in TSMC 0.18 µm CMOS technology is studied. The Darlington cell with cascode topology was adopted as the power cell to improve the maximum available gain of transistors in standard 0.18 µm CMOS technology to make it eligible of operating at Ka band. Furthermore, by proposing a new topology as an improved Darlington-cascode with intermediate inductor in the Darlington pair, the improvement in flat power gain at Ka band and more importantly, in available power gain of active element at high frequencies of the Ka band is achieved. The proposed power amplifier is a two stage structure with the driver stage... 

    Design and Simulation of Compact Optical Neural Network

    , M.Sc. Thesis Sharif University of Technology Poordashtban, Omid (Author) ; Khavasi, Amin (Supervisor)
    Abstract
    Optical computing is a new approach to the hardware implementation of devices that were previously implemented digitally and electronically. It has attracted a great deal of interest due to its benefits, which include high bandwidth, extensive internal connections, the possibility of parallel processing, high calculation speed, and low power consumption. Consequently, this type of implementation is regarded as an appropriate substrate for optical neural networks. Compact and low-power CMOS-compatible hardware can be used for on-chip optical neural networks (ONNs), enabling affordable and portable image classification solutions for applications like autonomous vehicles, healthcare, and... 

    Design and Synthesis of the Late Transition Metal Complexes Based on Naphthalimide and Pyridine Ligands and Study of their Photophysical Properties

    , Ph.D. Dissertation Sharif University of Technology Hendi, Zohreh (Author) ; Jamali, Sirous (Supervisor)
    Abstract
    In the first project, we have described the preparation of quadruply linked naphthalimide compounds 3-6. These compounds showed weak and strong excimeric emissions in solid and solution states, respectively. The experimental and theoretical results showed that the adjacent naphthalimide rings were oriented in solution so that intramolecular interchromophoric interactions enhanced the quantum yield efficiencies. However, although the strong intramolecular π and solute-solvent interactions in solution were replaced by n→π*, inter- and intramolecular π-interactions in the solid state, the naphthalimide units were aligned so that the quantum yield efficiencies were diminished. Also, a rise in... 

    Design and Synthesis of Functionalized Magnetic Nanocomposites for Removal of Dye And Heavy Metal Ions from Water and Theoretical Study on Their Selectivity

    , Ph.D. Dissertation Sharif University of Technology Abedin Moghanaki, Azardokht (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    In this thesis, it reports the fabrication of novel magnetic nanocomposites combining the unique properties of magnetic nanoparticles and cross-linked basic polymers that their surface functionalized by suitable groups such as carboxylate groups, pentaethylenehexamine and so on to achieve the maximum adsorption capacity of dyes and heavy metal ions. The performance of the magnetic nanocomposites for removal of anionic and cationic dyes and heavy metal ions were evaluated in different conditions of pH, contact time and initial concentrations. Moreover, the adsorption mechanism was investigated by kinetic models and isotherm studies. The results showed that the abovementioned adsorbents can... 

    Design and Construction the Low Cost Catalyst for Removal of VOCs from Air

    , M.Sc. Thesis Sharif University of Technology Fahimirad, Mahdi (Author) ; Shaygan Salek, Jalaloddin (Supervisor)
    Abstract
    Nowadays, increased pollutants in the air threat the society health condition and Volatile Organic Compounds (VOCs) are the most hazardous ones among them. In the present study, catalytic oxidation as a prominent of the VOCs removal method from air, have attracted attentions due to high removal efficiency and suitable kinetic reaction. Because of its common industrial applications, toluene is intended to be eliminated through a low cost carbon supported catalyst which is synthesised in the laboratory. Construction method, carbonaceous support type, catalyst metal and its load, calcination temperature and time are among influencing design characteristics. A combination of Impregnation and... 

    Design and Implementation of a X Band Front-end Receiver in GaAs Technology

    , M.Sc. Thesis Sharif University of Technology Sadeghabadi, Elham (Author) ; Medi, Ali (Supervisor)
    Abstract
    This thesis begins in an attempt to design an X band front-end receiver in GaAs pHEMT technology, suitable for microwave circuits which should be high frequency, low noise, high gain, as well as high power handling and should have stable characteristics at large number of productions. The front-end receiver consists of three blocks, namely limiter, low noise amplifier, and mixer, which are designed in ISDL group previously. The measurement result of the fabricated low noise amplifier was satisfactory, since it was close to its simulation result. However, due to the drawbacks of modeling the switching behavior of devices, the results of the two other blocks, i.e., limiter and mixer – which... 

    Design and Fabrication of Self-Healable Double-Network (DN) Hydrogels Based on Reversible and Irreversible Bonds with Tunable Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Aghajani Mongari, Mohammad Ali (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    In order to increase the mechanical properties and resistance of hydrogels to external damage, for their wide application in tissue engineering and medicine, self-healing two-grid hydrogels are used. Two-grid hydrogels with physical lattice have more advantages than two-grid hydrogels with chemical lattice because they have reversible and dynamic bonds, which in addition to increasing mechanical properties, also have self-healing properties. In order to achieve high mechanical properties, gelatin-based double-grid hydrogels with hydrogen bonding and metal-ligand interaction are designed. In the present paper, two-grid hydrogels consisting of gelatin network and other network of sodium... 

    Design and Prototyping of a Continuous Coaxial Nozzle for Uniforml Metal Powder Deposition at Various Angles

    , Ph.D. Dissertation Sharif University of Technology Nasiri Khansari, Mohammad Taghi (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Direct metal deposition (DMD) process is an additive manufacturing technology that is rapidly gaining laser importance due to its various capabilities in applications such as coating, repairing high-value damaged parts, rapid prototyping and even production in small quantities. Among the equipment needed for this process, nozzle is perhaps the most important component because its performance affect the efficiency of powders trapped in the molten pool, and is crucial to the quality of the deposited layer. The existing nozzle designs can be categorized in two groups; lateral and coaxial nozzles; and the coaxial ones are divided into continuous and discontinuous types. Coaxial nozzles have... 

    Design and Fabrication of Flexible Fiber- Shaped Hybrid Micro- Supercapacitors Based on Carbon Nanostructures and Oxides, Sulfides and Phosphides of Some Transition Metals

    , Ph.D. Dissertation Sharif University of Technology Naderi, Leila (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Miniaturization of electronic devices with portable, flexible and wearable characteristics created a great demand for high-performance microscale energy storage devices with lightweight and flexible properties. Among the energy storage devices, wire-shaped micro-supercapacitors have recently received tremendous attention due to their small size, lightweght, and high flexibility. In the first part, the porous dendritic Ni-Cu film was prepared on Cu wire substrate (CW) for fabrication of high- performance wire-type micro-supercapacitors (micro-SCs). The porous structure with dendritic morphology provides a high surface area, short ion diffusion pathway and low contact resistance between... 

    Design and Implementation of True Time Delay (TTD) Circuits in 0.18μm CMOS for Transceiver Module Application

    , Ph.D. Dissertation Sharif University of Technology Ghazizadeh, Mohammad Hossein (Author) ; Medi, Ali (Supervisor)
    Abstract
    In order to improve the performance of radar systems, encouraging the movement towards multifunctional applications, wider frequency span is required to be considered for phased array systems constituting radars. The conventional approach of phase shifting is not applicable to wideband phased array system, and the need for phased array systems based on time delay is apparent. In active phased array systems where a transceiver module is placed before each radiating element, the task of controlling the delay and gain variation of each path is assigned to individual core chips residing in the transceiver modules. A typical core chip consists of several amplifying blocks along, with delay and... 

    Design and Fabrication of Passive CMOS Phase Shifter

    , M.Sc. Thesis Sharif University of Technology Azizi Ghannad, Mehrdad (Author) ; Medi, Ali (Supervisor) ; Atarodi, Mojtaba (Co-Advisor)
    Abstract
    This research examines the issues of design and fabrication of Phase Shifter circuits on Silicon substrates. The Phase Shifter circuits are designed to have wide operation band width. They also should have very low sensitivity to process and temperature variation. A six bit phase shifter is designed at this research. We use a new topology for implementing the small phase shift steps and some circuits have been designed which their phase shifts can be adjusted after fabrication. All circuits are implemented with the 0.18µm CMOS technology. The research also explains all the necessary steps for measurement of fabricated circuits. The result of measurements shows good agreement with the... 

    Design and Implementation of 7-10 GHz CMOS Phase Shifter

    , M.Sc. Thesis Sharif University of Technology Mousavi, Naser (Author) ; Medi, Ali (Supervisor)
    Abstract
    Phased array systems which are used for sending and receiving electromagnetic signals in mandatory directions are widely used in today’s wireless communication, satellite communication, and radar systems. Phased array systems are composed of units called transmitter/ receiver (TR) modules. These units are connected to antennas in one end and to the combiner/divider at the other end and are playing a major role in determining the quality of phased arrays. Transmitter/Receiver units include a phase shifting circuit for controlling the phase and an attenuator circuit for amplitude control of the signal being sent or received, solid state switches and a number of amplifiers. The aim of this...