Loading...
Search for: metal-nanoparticle
0.007 seconds
Total 213 records

    Microstructural characterization and enhanced tensile and tribological properties of Cu-SiC nanocomposites developed by high-pressure torsion

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 4038-4051 ; 22387854 (ISSN) Akbarpour, M. R ; Gharibi Asl, F ; Mousa Mirabad, H ; Kim, H. S ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    In this study, an attempt has been made to fabricate Cu-SiC nanocomposites by flake powder metallurgy and high-pressure torsion processing techniques at room temperature. Pure Cu and a mixture of Cu and nano-sized SiC powders were mechanically milled separately for 3 h and then green compacts were prepared by uniaxial pressing under 1 GPa pressure. The green compacts experienced 6-turn high-pressure torsion under a pressure of 6 GPa to prepare bulk Cu and Cu-SiC samples. The microstructures of the consolidated samples were characterized using an X-ray diffractometer and a high resolution scanning/transmission electron microscope, and the mechanical properties were evaluated by microhardness,... 

    Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria

    , Article Materials ; Volume 15, Issue 5 , 2022 ; 19961944 (ISSN) Rabiee, N ; Ahmadi, S ; Akhavan, O ; Luque, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The... 

    Simple SPR-based colorimetric sensor to differentiate Mg2+ and Ca2+ in aqueous solutions

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 268 , 2022 ; 13861425 (ISSN) Amirjani, A ; Salehi, K ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg2+ ions. The developed sensor showed a selective response towards Mg2+ with no interference from Ca2+ in the wide concentration range of 1–200 µM. The sensor's response was optimized in the pH range of 9–10, which can be attributed to the protonation of amine groups and their interaction with Mg2+ ions. The stability and selectivity of the sensor were examined in different salt (NaCl) and other metal ions, respectively. The L-tryptophan-AgNPs sensor detected Mg2+ with the limit of detection of 3 µM, which is way lower... 

    Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer

    , Article ACS Applied Bio Materials ; Volume 5, Issue 3 , 2022 , Pages 1305-1318 ; 25766422 (ISSN) Ramezani Farani, M ; Azarian, M ; Heydari Sheikh Hossein, H ; Abdolvahabi, Z ; Mohammadi Abgarmi, Z ; Moradi, A ; Mousavi, S. M ; Ashrafizadeh, M ; Makvandi, P ; Saeb, M. R ; Rabiee, N ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The... 

    Multilayered mesoporous composite nanostructures for highly sensitive label-free quantification of cardiac troponin-i

    , Article Biosensors ; Volume 12, Issue 5 , 2022 ; 20796374 (ISSN) Saeidi, M ; Amidian, M. A ; Sheybanikashani, S ; Mahdavi, H ; Alimohammadi, H ; Syedmoradi, L ; Mohandes, F ; Zarrabi, A ; Tamjid, E ; Omidfar, K ; Simchi, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1 ) and anti-cTnI polyclonal antibody (Ab2 ) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2 ). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity... 

    Plasmon-enhanced photocatalytic activity in the visible range using AgNPs/polydopamine/graphitic carbon nitride nanocomposite

    , Article Applied Surface Science ; Volume 585 , 2022 ; 01694332 (ISSN) Shahsavandi, F ; Amirjani, A ; Reza Madaah Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Developing an efficient visible-light-driven photocatalyst is believed to be a practical solution for clean energy and environmental remediation. The present study aimed to broaden current knowledge of the graphitic carbon nitride (g-C3N4)-based plasmonic photocatalysts by decorating polydopamine-grafted g-C3N4 (PDA/g-C3N4) with silver nanoparticles (AgNPs). The nanocomposite was prepared using a facile synthesis method, while XPS and microscopy measurements confirmed the homogenous dispersion of AgNPs on PDA/g-C3N4. AgNPs successfully reduced the recombination rate of photoinduced electron-hole pairs. The calculated bandgap energy was decreased from 2.7 eV for pure g-C3N4 to 2.1 eV for... 

    Detection of molecular vibrations of atrazine by accumulation of silver nanoparticles on flexible glass fiber as a surface-enhanced Raman plasmonic nanosensor

    , Article Optical Materials ; Volume 128 , 2022 ; 09253467 (ISSN) Eskandari, V ; Kordzadeh, A ; Zeinalizad, L ; Sahbafar, H ; Aghanouri, H ; Hadi, A ; Ghaderi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Surface-Enhanced Raman Spectroscopy (SERS) is a sensitive vibration spectroscopy method applied to analyze a variety of analytes, including toxins and pesticides. The SERS method is an accurate method for detecting significantly low concentrations of biomaterials and chemicals. In the present study, in order to detect atrazine pesticide, the glass fiber substrates coated with silver nanoparticles have been used as SERS plasmonic nanosensors. First, silver nanoparticles were prepared by applying a chemical approach named the Tollens' method, and the SERS plasmonic substrates (SPS) were fabricated by depositing the colloidal silver solution on a glass fiber substrate. The SERS plasmonic... 

    New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction

    , Article Electrochimica Acta ; 2022 , Volume 436 ; 00134686 (ISSN) Moradi, M ; Hasanvandian, F ; Bahadoran, A ; Shokri, A ; Zerangnasrabad, S ; Kakavandi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Developing extremely efficient electrocatalysts for oxygen evolution reactions (OER) is a decisive step toward the progression of rechargeable metal-oxygen batteries, CO2 reduction, and water-splitting. Nanoporous high-entropy transition-metal sulfides (np-HETMS) represent a new generation of promising OER catalysts by virtue of their exceptional catalytic activity. However, their synthesis maintains to be a challenge by reason of the thermodynamic immiscibility of the constituting multi-principal metallic elements in the sulfide structure. Herein, for the first time, the np-HETMS ((CoFeNiMnCu)S2) nanoparticles with pyrite-phase was synthesized via a facile and easy adaptable... 

    Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Mohsen Dehnavi, S ; Ahmadi Seyedkhani, S ; Yahya Rahnamaee, S ; Golizadeh, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, novel zeolitic imidazolate framework-8 (ZIF-8) functionalized with Ag (Ag@ZIF-8) nanoparticles were synthesized through a green, facile and environmental-friendly process for wound dressing applications. X-ray diffraction revealed that the ZIF-8 and Ag@ZIF-8 were successfully synthesized by green solvents at ambient temperature. Field-emission scanning electron microscopy indicated a homogeneous porous blend of ∼30 nm chitosan/bacterial cellulose (CS/BC) nanofibers embedded with ∼80–110 nm nanoparticles of the ZIF-8 and Ag@ZIF-8. Transmission electron microscopy revealed the Ag@ZIF-8 nanostructures consist of ZIF-8 cores that are covered by 5–20 nm Ag nanoparticles. MTT assay... 

    Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance

    , Article Expert Opinion on Drug Delivery ; Volume 19, Issue 4 , 2022 , Pages 355-382 ; 17425247 (ISSN) Ashrafizadeh, M ; Saebfar, H ; Gholami, M.H ; Hushmandi, K ; Zabolian, A ; Bikarannejad, P ; Hashemi, M ; Daneshi, S ; Mirzaei, S ; Sharifi, E ; Kumar, A.P ; Khan, H ; Heydari Sheikh Hossein, H ; Vosough, M ; Rabiee, N ; Kumar Thakur, V ; Makvandi, P ; Mishra, Y. K ; Tay, F. R ; Wang, Y ; Zarrabi, A ; Orive, G ; Mostafavi, E ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Introduction: The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. Areas covered: The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer, GO-mediated photothermal therapy, and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. Expert opinion: GO... 

    Facile synthesis of iron titanate/nitrogen-doped graphene on Ni foam as a binder-free electrocatalyst for oxygen evolution reaction

    , Article Journal of Electroanalytical Chemistry ; Volume 904 , 2022 ; 15726657 (ISSN) Mousavi, D. S ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Given the growing need for renewable energy and related technologies, researches have shifted to develop low-cost, stable, high-efficiency electrocatalysts in clean energy generation reactions such as water electrolysis. In the present paper, a three-dimensional Fe2TiO5/nitrogen-doped graphene (3D FTO/NG) nanocomposite is prepared using a simple, cheap and fast method, called chemical bath deposition (CBD). Structural and physical characterizations of the prepared electrocatalysts are performed by different methods such as Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Fourier Transform InfraRed spectra (FT-IR), Dynamic Light Scattering... 

    Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles

    , Article Ceramics International ; Volume 48, Issue 2 , 2022 , Pages 2782-2792 ; 02728842 (ISSN) Lu, Y ; Yousaf, M ; Akhtar, M. N ; Noor, A ; Akbar, M ; Shah, M. A. K. Y ; Yan, S ; Wang, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Rare earth oxides with a trivalent nature play a pivotal role in reinforcing the magneto-optical attributes of spinel ferrite nanoparticles by replacing Fe3+ ions. In this study, rare earth Gd oxide doped with CoFe2O4 NPs with a composition of Co1+xGdxFe2-2xO4 (x = 0, 0.05, 0.10, and 0.15) were synthesized using sol-gel auto-combustion. The outcome of Gd cations on the physical, magneto-optical and electrical characteristics of the cobalt ferrite NPs were reported. X-ray diffraction (XRD), and Fourier transform infrared (FTIR) investigations confirmed the single-phase cubic crystalline nature and metal ion stretching in the cobalt ferrite synthesized samples. Decreasing drift in the average... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of...