Loading...
Search for: model-uncertainties
0.006 seconds
Total 59 records

    A comprehensive review on uncertainty modeling techniques in power system studies

    , Article Renewable and Sustainable Energy Reviews ; Volume 57 , 2016 , Pages 1077-1089 ; 13640321 (ISSN) Aien, M ; Hajebrahimi, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some... 

    Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions

    , Article Journal of Biomechanics ; Volume 49, Issue 6 , 2016 , Pages 913-918 ; 00219290 (ISSN) Hajibozorgi, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Range of motion (ROM) of the thoracic spine has implications in patient discrimination for diagnostic purposes and in biomechanical models for predictions of spinal loads. Few previous studies have reported quite different thoracic ROMs. Total (T1-T12), lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), pelvis, and entire trunk (T1) ROMs were measured using an inertial tracking device as asymptomatic subjects flexed forward from their neutral upright position to full forward flexion. Correlations between body height and the ROMs were conducted. An effect of measurement errors of the trunk flexion (T1) on the model-predicted spinal loads was investigated. Mean of peak voluntary total... 

    Fuzzy dynamic thermal rating of transmission lines

    , Article IEEE Transactions on Power Delivery ; Volume 27, Issue 4 , 2012 , Pages 1885-1892 ; 08858977 (ISSN) Shaker, H ; Fotuhi Firuzabad, M ; Aminifar, F ; Sharif University of Technology
    Abstract
    Dynamic thermal rating (DTR) of transmission system facilities is a way to maximally realize the equipment capacities while not threatening their health. With regards to transmission lines, the allowable current of conductors is forecasted based on the environmental situations expected in some forthcoming time periods. Due to the fact that weather conditions continuously vary, sampling points are very limited against many line spans, and the measurements have an inherent error, uncertainties must be appropriately included in the DTR determination. This paper adopts the fuzzy theory as a strong and simple tool to model uncertainties in the DTR calculation. Since DTR intends to determine the... 

    Fault diagnosis in robot manipulators in presence of modeling uncertainty and sensor noise

    , Article Proceedings of the IEEE International Conference on Control Applications, 8 July 2009 through 10 July 2009, Saint Petersburg ; 2009 , Pages 1750-1755 ; 9781424446025 (ISBN) Mohseni, S ; Namvar, M ; Sharif University of Technology
    Abstract
    In this paper, we introduce a new approach to fault detection and isolation for robot manipulators. Our technique is based on using a new simplified Euler-Lagrange (EL) equation that reduces complexity of the proposed fault detection method. The proposed approach isolates the faults and is capable of handling the uncertainty in manipulator gravity vector. It is shown that the effect of uncalibrated torque sensor measurement is asymptotically rejected in the detection process. A simulation example is presented to illustrate the results. © 2009 IEEE  

    Zero-gravity emulation of satellites in present of uncalibrated sensors and model uncertainties

    , Article Proceedings of the IEEE International Conference on Control Applications, 8 July 2009 through 10 July 2009, Saint Petersburg ; 2009 , Pages 1063-1068 ; 9781424446025 (ISBN) Talebpour, M ; Namvar, M ; Sharif University of Technology
    Abstract
    Recently, an alternative to the standard passive zero gravity emulation testbeds is developed which uses robotic technology. It is comprised of a manipulator whose end-effector rigidly grasps a satellite mock up, a six-axis force/moment (F/M) sensor placed at the interface of the satellite and the manipulator, and a control system. Despite significant advantages of the approach there exist practical problems such as the existence of uncertainty in the robot dynamic model as well as uncalibrated force/moment sensor measurements. In this paper, new adaptive methods based on the Lyapunov theory are proposed to deal with the model uncertainty and imperfect sensor measurements. Simulations which... 

    Design of a fractional order PID controller for an AVR using particle swarm optimization

    , Article Control Engineering Practice ; Volume 17, Issue 12 , 2009 , Pages 1380-1387 ; 09670661 (ISSN) Zamani, M ; Karimi Ghartemani, M ; Sadati, N ; Parniani, M ; Sharif University of Technology
    Abstract
    Application of fractional order PID (FOPID) controller to an automatic voltage regulator (AVR) is presented and studied in this paper. An FOPID is a PID whose derivative and integral orders are fractional numbers rather than integers. Design stage of such a controller consists of determining five parameters. This paper employs particle swarm optimization (PSO) algorithm to carry out the aforementioned design procedure. PSO is an advanced search procedure that has proved to have very high efficiency. A novel cost function is defined to facilitate the control strategy over both the time-domain and the frequency-domain specifications. Comparisons are made with a PID controller and it is shown... 

    Nonlinear adaptive control method for treatment of uncertain hepatitis B virus infection

    , Article Biomedical Signal Processing and Control ; Volume 38 , 2017 , Pages 174-181 ; 17468094 (ISSN) Aghajanzadeh, O ; Sharifi, M ; Tashakori, S ; Zohoor, H ; Sharif University of Technology
    Abstract
    In this paper, a nonlinear adaptive control method is presented for the treatment of the Hepatitis B Virus (HBV) infection. Nonlinear dynamics of the HBV, modeling uncertainties and three state variables (the numbers of uninfected and infected cells and free viruses) are taken into account. The proposed control law is designed for the antiviral drug input such that the number of free viruses and consequently the number of infected cells decrease to the desired values. An adaptation law is also presented to overcome modeling uncertainties by updating estimations of the system parameters during the treatment period. The stability of the process and convergence to desired state values are... 

    H ∞ and μ synthesis control of virtual structure satellites formation flying

    , Article International Journal of Dynamics and Control ; Volume 5, Issue 3 , 2017 , Pages 741-755 ; 2195268X (ISSN) Hassani, A ; Saghafi, F ; Pasand, M ; Sharif University of Technology
    Abstract
    Recent developments in the space industry and the great tendency to define efficient, precise and low cost missions are the main reasons for the growing interest in satellites formation flight. Regarding the aforementioned, the study of multiple satellites control methods is the subject of the present paper. In this paper, two linear robust control strategies are applied to position control system of certain satellites in the virtual structure formation flight. The proposed controllers are designed considering different parametric uncertainties such as semimajor axis and eccentricity changes as well as some disturbances like second term of gravitational acceleration function (j2) and drag... 

    Probabilistic modeling framework for prediction of seismic retrofit cost of buildings

    , Article Journal of Construction Engineering and Management ; Volume 143, Issue 8 , 2017 ; 07339364 (ISSN) Nasrazadani, H ; Mahsuli, M ; Talebiyan, H ; Kashani, H ; Sharif University of Technology
    Abstract
    This study presents a framework that utilizes Bayesian regression to create probabilistic cost models for retrofit actions. Performance improvement is the key parameter introduced in the proposed framework. The incorporation of this novel feature facilitates the characterization of retrofit cost as a continuous function of the desired performance improvement. Accounting for the performance gained from retrofit enables the use of the models in determining the optimal level of retrofit. Furthermore, accounting for the model uncertainty facilitates the use of the models in risk and reliability analyses. The proposed framework is applied to create seismic retrofit cost models for masonry school... 

    Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty

    , Article Journal of Process Control ; Volume 56 , 2017 , Pages 48-57 ; 09591524 (ISSN) Sharifi, M ; Moradi, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper, a nonlinear robust adaptive sliding mode control strategy is presented for the influenza epidemics in the presence of model uncertainties. The nonlinear epidemiological model of influenza with five state variables (the numbers of susceptible, exposed, infected, asymptomatic and recovered individuals) and two control inputs (vaccination and antiviral treatment) is considered. The objective of the proposed controller is decreasing the number of susceptible and infected humans to zero by tracking the desired scenarios. As a result of this decreasing, the number of exposed and asymptomatic individuals is also decreased and converged to the zero. Accordingly, it is shown that the... 

    Patient-Robot-therapist collaboration using resistive impedance controlled tele-robotic systems subjected to time delays

    , Article Journal of Mechanisms and Robotics ; Volume 10, Issue 6 , 2018 ; 19424302 (ISSN) Sharifi, M ; Salarieh, H ; Behzadipour, S ; Tavakoli, M ; Sharif University of Technology
    Abstract
    In this paper, an approach to physical collaboration between a patient and a therapist is proposed using a bilateral impedance control strategy developed for delayed tele-robotic systems. The patient performs a tele-rehabilitation task in a resistive virtual environment with the help of online assistive forces from the therapist being provided through teleoperation. Using this strategy, the patient's involuntary hand tremors can be filtered out and the effort of severely impaired patients can be amplified in order to facilitate their early engagement in physical tasks. The response of the first desired impedance model is tracked by the master robot (interacting with the patient), and the... 

    Probabilistic hierarchical bayesian framework for time-domain model updating and robust predictions

    , Article Mechanical Systems and Signal Processing ; 2018 ; 08883270 (ISSN) Sedehi, O ; Papadimitriou, C ; Katafygiotis, L. S ; Sharif University of Technology
    Abstract
    A new time-domain hierarchical Bayesian framework is proposed to improve the performance of Bayesian methods in terms of reliability and robustness of estimates particularly for uncertainty quantification and propagation in structural dynamics. The proposed framework provides a reliable approach to account for the variability of the inference results observed when using different data sets. The proposed formulation is compared with a state-of-the-art Bayesian approach using numerical and experimental examples. The results indicate that the hierarchical Bayesian framework provides a more realistic account of the uncertainties, whereas the non-hierarchical Bayesian approach severely... 

    Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft

    , Article IET Control Theory and Applications ; Volume 12, Issue 15 , 2018 , Pages 2031-2042 ; 17518644 (ISSN) Emami, S. A ; Rezaeizadeh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    A novel adaptive model-based predictive controller for attitude and trajectory tracking of a vertical take-off and landing(VTOL) aircraft in the simultaneous presence of model uncertainties and external disturbances is introduced in this study. Animportant challenge of designing the model-based controllers is developing an accurate model, especially in the presence ofmodel uncertainties. In this study, first, the nominal model of a ducted-fan air vehicle, which is a multi-input multi-outputnonlinear system with non-minimum phase behaviour, is given as the test case of this research. After that, two modified robustand adaptive model predictive controllers are proposed for tracking a... 

    Adaptive robust control of fractional-order swarm systems in the presence of model uncertainties and external disturbances

    , Article IET Control Theory and Applications ; Volume 12, Issue 7 , 2018 , Pages 961-969 ; 17518644 (ISSN) Naderi Soorki, M ; Tavazoei, M. S ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    This study investigates the asymptotic swarm stabilisation of fractional-order swarm systems in the presence of two different kinds of model uncertainties and external disturbances while the upper bound of the uncertainties is a linear function of pseudo-states norms with unknown coefficients. To this end, first a fractional-integral sliding manifold is constructed and then an adaptive-robust sliding mode controller is designed to guarantee the asymptotic swarm stability in a fractional-order linear time-invariant swarm system. The stability analysis of the proposed control system is done based on the Lyapunov stability theorem. Using the proposed controller, the coefficients of the upper... 

    Robust-fuzzy model for supplier selection under uncertainty: an application to the automobile industry

    , Article Scientia Iranica ; Volume 25, Issue 4 , 2018 , Pages 2297-2311 ; 10263098 (ISSN) Rabieh, M ; Modarres, M ; Azar, A ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    This paper proposes an innovative robust-fuzzy method for multi-objective, multi-period supplier selection problem under multiple uncertainties. This approach integrates robust optimization and fuzzy programming. Uncertain parameters are modeled as random variables that take value within a symmetrical interval. However, due to the complexity or ambiguity of some real world problems and especially the nature of some of the available input data, the length of interval is also highly uncertain. This ambiguity motivated us to present a new approach, which could be applicable to multiple uncertainties conditions. Thus, in our approach, the half-length of these intervals is also represented by... 

    In-flight estimation of time-varying aircraft center of gravity position based on kinematics approach

    , Article Journal of Aircraft ; Volume 55, Issue 5 , 2018 , Pages 2037-2049 ; 00218669 (ISSN) Dehghan Manshadi, A ; Saghafi, F ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2018
    Abstract
    In-flight aircraft center of gravity (COG) position estimation is investigated in this study based on the kinematics approach. The Quad-M basics of system identification requirements are carefully investigated for time-invariant and time-varying COG estimation during airdrop maneuver as a case study that contains both conditions. Modeling and simulation of airdrop maneuver are employed to prepare the required maneuver and measurement data for this investigation. The relative-acceleration equation, as a model structure, and parameter modeling of time-varying COG location and acceleration are introduced into the system identification and parameter estimation framework. The Kalman filter method... 

    Control of stochastic chaos using sliding mode method

    , Article Journal of Computational and Applied Mathematics ; Volume 225, Issue 1 , 2009 , Pages 135-145 ; 03770427 (ISSN) Salarieh, H ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    Stabilizing unstable periodic orbits of a deterministic chaotic system which is perturbed by a stochastic process is studied in this paper. The stochastic chaos is modeled by exciting a deterministic chaotic system with a white noise obtained from derivative of a Wiener process which eventually generates an Ito differential equation. It is also assumed that the chaotic system being studied has some model uncertainties which are not random. The sliding mode controller with some modifications is used for stochastic chaos suppression. It is shown that the system states converge to the desired orbit in such a way that the error covariance converges to an arbitrarily small bound around zero. As... 

    Micro resonator nonlinear dynamics considering intrinsic properties

    , Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 121-129 ; 10263098 (ISSN) Sayyaadi, H ; Tadayon, M. A ; Eftekharian, A. A ; Sharif University of Technology
    2009
    Abstract
    One of the most important phenomena to affect the motion behaviour of Micro Resonators is their thermal dependency. This has recently received the attention of researchers widely. A thermal phenomenon has two main effects, the first is damping, due to internal friction, and the second is softening, due to Young's modulus-temperature relationship. In this research work, some theoretical and experimental reported results are used to make a proper model, including thermal phenomena. Two Lorentzian functions are used to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, considering capacitor... 

    Adaptive 2D-path optimization of steerable bevel-tip needles in uncertain model of brain tissue

    , Article 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, Los Angeles, CA, 31 March 2009 through 2 April 2009 ; Volume 5 , 2009 , Pages 254-260 ; 9780769535074 (ISBN) Sadati, N ; Torabi, M ; Sharif University of Technology
    2009
    Abstract
    Although there are many works in which path planning of robots is studied, but path planning of the bevel-tip needles with highly flexible body is different and difficult due to unique properties of soft tissues. Real soft tissues are nonhomogeneously elastic and uncertainly deformable and hence, during needle motions the planned path changes unknowingly. In this paper, a novel adaptive path planning of bevel-tip needles inside the uncertain brain tissue is presented. The proposed approach is based on minimization of a Lyapanov energy function used as the cost function which consists of 6 partial costs: path length, number of changes in bevel direction, tissue deformation, horizontal and... 

    Multi-Attribute decision making on Inter-Basin Water Transfer projects

    , Article Scientia Iranica ; Volume 16, Issue 1 E , 2009 , Pages 73-80 ; 10263098 (ISSN) Zarghami, M ; Szidarovszky, F ; Ardakanian, R ; Sharif University of Technology
    2009
    Abstract
    One of the best ways to control water shortages in the central region of Iran is Inter-Basin Water Transfer (IBWT). Efficient decision making on this subject is, however, a real challenge for the water authorities in Iran. These decisions should include multiple attributes, model uncertainty and, also, the optimistic/pessimistic view of the decision makers. The Ordered Weighted Averaging (OWA) operator can be used as an efficient Multi-Attribute Decision Making (MADM) method. This paper will introduce a new method to obtain the order weights of this operator. The new method is based on a combination of fuzzy quantifiers and neat OWA operators. Fuzzy quantifiers are usually applied in soft...