Loading...
Search for: monomer
0.006 seconds
Total 118 records

    The preparation and rheological investigation of polymer and hydrogel modified drilling mud

    , Article Petroleum Science and Technology ; Volume 30, Issue 10 , 2012 , Pages 1059-1068 ; 10916466 (ISSN) Tamsilian, Y ; Ramazani, S. A. A ; Khosravi, N ; Sharif University of Technology
    2012
    Abstract
    The authors carried out the study to prepare chitosan N-isopropylacrylamide hydrogel via heating and radiation processes. Properties investigation of prepared samples revealed that radiation prepared samples show higher yield and swelling ratios in comparison with the heating prepared ones. Effects of hydrogel addition to drilling mud on its important rheological properties such as apparent viscosity, plastic viscosity, and stress-strain behavior are measured. The rheological properties of hydrogel were compared with cellulosemethylcarboxyl and resins that are widely used in drilling fluid. The results demonstrate that whereas linear polymer effects on mud properties are more significant in... 

    Preparation of acrylated agarose-based hydrogels and investigation of their application as fertilizing systems

    , Article Journal of Applied Polymer Science ; Volume 122, Issue 4 , November , 2011 , Pages 2424-2432 ; 00218995 (ISSN) Pourjavadi, A ; Sadat Afjeh, S ; Seidi, F ; Salimi, H ; Sharif University of Technology
    2011
    Abstract
    In this study, we attempt to synthesize novel acrylated agarose (ACAG)-based hydrogels with three different crosslinking densities. Acrylate groups were inserted onto agarose (AG) backbone through homogeneous reaction of acrylic monomers with AG backbone. Hydrogels were synthesized through radical copolymerization of a mixture of acrylic acid and 2-hydroxyethyl acrylate with ACAG in aqueous solution using ammonium persulfate as an initiator. Infrared spectroscopy (FTIR) was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was assessed by scanning electron microscopy. The equilibrium swelling capacities of synthesized hydrogels were evaluated... 

    Polypyrrole nanowires network for convenient and highly efficient microextraction in packed syringe

    , Article Analytical Methods ; Volume 3, Issue 11 , 2011 , Pages 2630-2636 ; 17599660 (ISSN) Bagheri, H ; Ayazi, Z ; Sharif University of Technology
    Abstract
    A novel method based on microextraction in packed syringe (MEPS), as a sample preparation technique in combination with gas chromatography-mass spectrometry (GC-MS) was developed using a polypyrrole (PPy) nanowires network as the extracting medium. The PPy nanowires network was prepared using a soft template technique and its characterization was studied by scanning electron microscopy (SEM). The use of micelles in this methodology has an important role in the shape of the growing polymer. The pyrrole monomer was introduced into cetyltrimethylammonium bromide (CTAB) micelles and this has led to the formation of nanowires with diameters ranging from 30 to 60 nm. The bulk PPy prepared without... 

    Correlations for prediction of specific surface area and bulk and apparent densities of porous styrene-divinylbenzene copolymers

    , Article Journal of Applied Polymer Science ; Volume 120, Issue 4 , 2011 , Pages 1942-1949 ; 00218995 (ISSN) Nodehi, A ; Hajiebrahimi, M ; Parvazinia, M ; Shahrokhi, M ; Abedini, H ; Sharif University of Technology
    Abstract
    Macroporous styrene-divinylbenzene copolymers with different degree of crosslinking were prepared by suspension polymerization in presence of different binary mixtures of toluene and heptane, as diluent. Specific surface area, bulk and apparent densities, and pore volume of the resulting beads were determined experimentally. Applying the least square method to the experimental data, correlations for prediction of these properties were obtained. Effects of divinylbenzene concentration, diluent to comonomer volume ratio, and composition of the diluent mixture were considered in developing the aforementioned correlations. The influence of the reaction recipe on porous structure of the samples... 

    Electrochemical preparation of a molecularly imprinted polypyrrole modified pencil graphite electrode for the determination of phenothiazine in model and real biological samples

    , Article Talanta ; Volume 144 , November , 2015 , Pages 456-465 ; 00399140 (ISSN) Nezhadali, A ; Rouki, Z ; Nezhadali, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract A sensitive electrochemical sensor for determination of phenothiazine (PTZ) was introduced based on molecularly imprinted polymer (MIP) film. A computational study was performed to evaluate the template-monomer geometry and interaction energy in the prepolymerization mixture. The electrode was prepared during electropolymerization of pyrrole (Py) on a pencil graphite electrode (PGE) by cyclic voltammetry (CV) technique. The quantitative measurements were performed using differential pulse voltammetry (DPV) in Britton-Robinson (BR) buffer solutions using 60% (v/v) acetonitrile-water (ACN/H2O) binary solvent. The effect of important parameters like pH, monomer... 

    Polymeric ionic liquid nanogel-anchored tungstate anions: A robust catalytic system for oxidation of sulfides to sulfoxides

    , Article New Journal of Chemistry ; Volume 39, Issue 2 , 2015 , Pages 1348-1354 ; 11440546 (ISSN) Pourjavadi, A ; Nazari Chamazkoti, M ; Hosseini, S. H ; Sharif University of Technology
    Abstract
    A new heterogeneous catalytic system was prepared by immobilization of tungstate ions on a cross-linked poly(ionic liquid) nanogel. The solid nanogel was easily synthesized by a surfactant-less method. The resulting catalyst was highly active in selective oxidation of sulfides to sulfoxides by H2O2. The oxidation reactions were successfully performed under solvent-free conditions affording high yields. The catalyst was recycled and reused for several reaction cycles without any significant loss of catalytic activity  

    Preparation and Properties of Ethylene-vinyl Acetate/linear Low-density Polyethylene/Graphene Oxide Nanocomposite Films

    , Article Polymer - Plastics Technology and Engineering ; Volume 54, Issue 11 , 2015 , Pages 1152-1158 ; 03602559 (ISSN) Bahmanyar, M ; Ramazani, S. A ; Baniasadi, H ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Ethylene-vinyl acetate-based nanocomposites with 18 and 28 wt% vinyl acetate were prepared via solution casting method. To improve the mechanical and barrier properties of ethylene-vinyl acetate, linear low-density polyethylene, and graphene oxide were introduced to matrix. The morphological studies indicated that the graphene oxide diffraction peak disappeared in all prepared nanocomposites, probably due to its exfoliation; also proper dispersion and good interaction between nanofillers and polymer matrix were achieved. By introducing low amount of graphene oxide into the matrix, the mechanical and thermal properties and oxygen permeability were improved especially for those with 28 wt%... 

    Morphology transition control of polyaniline from nanotubes to nanospheres in a soft template method

    , Article Polymer International ; Volume 64, Issue 1 , June , 2015 , Pages 88-95 ; 09598103 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    A soft template route is reported for the fabrication of polyaniline nanospheres via the oxidative polymerization of aniline in the presence of β-naphthalenesulfonic acid (β-NSA) as both surfactqant and dopant, and ammonium persulfate as oxidant at 2-5°C. Control over the morphology and size of the nanoparticles was achieved by changing the reaction medium via addition of an organic cosolvent (i.e. ethanol or ethylene glycol) and by controlling the concentrations of aniline and β-NSA and the molar ratio of β-NSA to aniline. By this means the size of the β-NSA-aniline micelles and the way that aniline monomer interacts with the micelles were controlled. In fact the lower dielectric constant... 

    Synthesis and swelling behavior of acrylatedstarch-g-poly (acrylic acid) and acrylatedstarch-g-poly (acrylamide) hydrogels

    , Article Carbohydrate Polymers ; Volume 79, Issue 4 , 2010 , Pages 933-940 ; 01448617 (ISSN) Pourjavadi, A ; Eftekhar Jahromi, P ; Seidi, F ; Salimi, H ; Sharif University of Technology
    Abstract
    In the present work, synthesis and swellability of acrylatedstarch-based hydrogels was investigated. Acrylic groups were introduced onto starch backbone by a homogeneous synthesis to produce starch monomers with three different degree of substitution (DS). The radical copolymerization of acrylatedstarch (AST) with acrylic acid (AA) and acrylamide (AAm) was carried out in aqueous solution using ammonium persulfate (APS) as an initiator. Infrared spectroscopy (FT-IR) and TGA thermal analysis were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). Their equilibrium swelling degree was evaluated... 

    Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels

    , Article Journal of Intelligent Material Systems and Structures ; Volume 27, Issue 3 , 2016 , Pages 324-336 ; 1045389X (ISSN) Mazaheri, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    The aim of this work is to develop a model to continuously predict inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels. Employing this model, some benchmark homogeneous problems such as free, unidirectional constrained and biaxial constrained swelling as well as swelling of core-shell structures are investigated. The main advantage of the model is its ability to solve inhomogeneous deformations due to a stable behavior in the vicinity of the phase transition temperature. Therefore, inhomogeneous swelling of a spherical shell on a hard core with application to microfluidics is analytically and numerically investigated for various... 

    Facile synthesis of cauliflower-like hydrophobically modified polyacrylamide nanospheres by aerosol-photopolymerization

    , Article European Polymer Journal ; Volume 83 , 2016 , Pages 323-336 ; 00143057 (ISSN) Shaban, M ; Ramazani, S. A. A ; Ahadian, M. M ; Tamsilian, Y ; Weber, A. P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Amphiphilic copolymers consist of hydrophilic and hydrophobic monomer units have attracted great technological attention recently, owing to their unique properties and their ability to stabilize various interfaces in aqueous systems. This paper presents a novel and facile approach to produce spherical polyacrylamide, polystyrene and hydrophobically modified polyacrylamide (HM-PAM), as one of the most important type of amphiphilic copolymers, using a continuous aerosol-photopolymerization for the first time. To this end, the monomer droplets were generated by an atomizer, then photopolymerization was initiated ‘‘in flight’’ by ultraviolet (UV) irradiation of the aerosol monomer droplets... 

    Ultrafast and efficient removal of cationic dyes using a magnetic nanocomposite based on functionalized cross-linked poly(methylacrylate)

    , Article Reactive and Functional Polymers ; Volume 105 , 2016 , Pages 95-102 ; 13815148 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In this study, a new magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with ethylenediamine and sodium chloroacetate. The generated magnetic nanocomposite was characterized by FT-IR, TEM, SEM, TGA, VSM, XRD and elemental analysis. Its key role as an adsorbent for the removal of typical cationic dyes, methyl violet and malachite green was investigated in terms of pH, contact time and initial dye concentration. The resulted adsorbent displays excellent adsorption capacities for cationic dyes which are more effective than most of the adsorbents reported so far.... 

    Novel salep-based chelating hydrogel for heavy metal removal from aqueous solutions

    , Article Polymers for Advanced Technologies ; Volume 27, Issue 8 , 2016 , Pages 999-1005 ; 10427147 (ISSN) Soleyman, R ; Pourjavadi, A ; Monfared, A ; Khorasani, Z ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    A novel optimized chelating hydrogel was synthesized via graft copolymerization of acrylamide and 2-hydroxyethyl methacrylate (as two-dentate chelating co-monomer) onto salep (a multicomponent polysaccharide obtained from dried tubers of certain natural terrestrial orchids) using N,N′-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. Reaction parameters (N,N′-methylenebisacrylamide and ammonium persulfate amounts as well as acrylamide/2-hydroxyethyl methacrylate weight ratio) affecting the water absorption of the chelating hydrogel were optimized using a systematic method to achieve a hydrogel with high swelling capacity as possible. Heavy metal ion adsorption... 

    Dendritic multi-walled carbon nanotube with thermoresponsive shells: A good carrier for anticancer drugs

    , Article Journal of Industrial and Engineering Chemistry ; Volume 35 , 2016 , Pages 332-340 ; 1226086X (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Shirvani, T ; Doulabi, M ; Bumajdad, A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry 
    Abstract
    In this research, multi-walled carbon nanotubes (MWCNTs) were modified by dendritic macromonomer. Herein, polyamidoamine with acrylamide end groups was incorporated on MWCNTs. Afterwards, poly(N-isopropylacrylamide), (PNIPAM), was grafted on polyamidoamine in a facile synthesis. Then, doxorubicin as anticancer drug was loaded on this nanocarrier. The drug release was studied at below and above the lower critical solution temperature of PNIPAM, (LCST 32 °C), 27 °C and 37 °C, respectively. At 37 °C (body temperature) the polymer shell dehydrated and the drug release increased. The profile of drug release was expressed by Higuchi's equation which indicated that the drug release mechanism was... 

    High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationships

    , Article Colloid and Polymer Science ; Volume 294, Issue 3 , 2016 , Pages 513-525 ; 0303402X (ISSN) Tamsilian, Y ; Ramazani S. A ; Shaban, M ; Ayatollahi, S ; Tomovska, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    High molecular weight polyacrylamide (PAM) nanoparticle dispersions are products with wide application possibilities, the most important of which is in petroleum industry such as drilling fluid and flooding agent in enhanced oil recovery. For that aim, it is necessary to achieve complete control of the final dispersion and polymer properties during the synthesis step. In this work, PAMs were synthesized by inverse emulsion polymerization of aqueous acrylamide solution in cyclohexane in the presence of emulsifier mixture of Span 20 and Span 80. We present a comprehensive study of the effects of variation of all important reaction conditions (agitation rate, reaction time and temperature,... 

    High-performance carboxylate superplasticizers for concretes: Interplay between the polymerization temperature and properties

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 23 , 2017 ; 00218995 (ISSN) Tajbakhshian, A ; Saeb, M. R ; Jafari, S. H ; Najafi, F ; Khonakdar, H. A ; Ayoubi, M ; Hassanpour Asl, F ; Sharif University of Technology
    Abstract
    Polycarboxylate superplasticizers based on acrylic acid (AA) and maleic anhydride (MAn) were synthesized via free-radical copolymerization with an ethylene glycol monomer and characterized. The copolymerization temperature (ranging from 50 to 90 °C) appeared to be the key operating factor governing the chemical structure of the superplasticizers. The chemical structures of the products were analyzed by gel permeation chromatography, whereas an optimized sample was further analyzed by Fourier transform infrared spectroscopy and 1H-NMR. Superplasticizers of the AA and MAn classes were then incorporated into concrete, and their performances were measured by slump and slump loss tests, where a... 

    Poly(N-isopropylacrylamide)-coated β-cyclodextrin–capped magnetic mesoporous silica nanoparticles exhibiting thermal and pH dual response for triggered anticancer drug delivery

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 66, Issue 7 , 2017 , Pages 336-348 ; 00914037 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    In this research a novel controlled anticancer drug delivery system with dual pH and thermal responses was designed based on magnetic mesoporous silica nanoparticles that were anchored by β-cyclodextrin and coated by poly(N-isopropylacrylamide) (PNIPAM). Results demonstrated that the behavior of doxorubicin (anticancer drug) release depended on pH and temperature conditions. At endosomal pH (pH 5.5) the amount of drug release enhanced because the cap was removed from the pores. Furthermore, PNIPAM shell collapsed above the lower critical solution temperature and the releasing of drug increased. Thus, this nanocarrier would have the potential to be applied in the tumor therapy. © 2017 Taylor... 

    Facile fabrication of superhydrophobic nanocomposite coating using modified silica nanoparticles and non-fluorinated acrylic copolymer

    , Article Polymer Bulletin ; Volume 75, Issue 10 , 2018 , Pages 4641-4655 ; 01700839 (ISSN) Pourjavadi, A ; Esmaili, H ; Nazari, M ; Sharif University of Technology
    Abstract
    A superhydrophobic nanocomposite coating was fabricated using a simple procedure. The nanocomposite is composed of an acrylic copolymer and modified silica nanoparticles. The acrylic copolymer was prepared by free radical copolymerization of methyl methacrylate and dodeycl methacrylate monomers. Silica nanoparticles were synthesized and modified with an alkyl silane reagent, hexadecyltrimethoxysilane. A mixture of acrylic copolymer and modified silica nanoparticles, dispersed in dichloromethane, was then sprayed on glass and filter paper surface. Chemical composition and structure of the coatings were investigated by FTIR, FESEM, AFM, 1H-NMR and GPC. The wettability of the prepared coating... 

    Mechanical differences between ATP and ADP actin states: A molecular dynamics study

    , Article Journal of Theoretical Biology ; Volume 448 , 2018 , Pages 94-103 ; 00225193 (ISSN) Mehrafrooz, B ; Shamloo, A ; Sharif University of Technology
    Academic Press  2018
    Abstract
    This paper aims to give a comprehensive atomistic modeling of the nanomechanical behavior of actin monomer. Actin is a ubiquitous and essential component of cytoskeleton which forms many different cellular structures. Despite for several years great effort has been devoted to the investigation of mechanical properties of the actin filament, studies on the nanomechanical behavior of actin monomer are still lacking. These scales are, however, important for a complete understanding of the role of actin as an important component in the cytoskeleton structure. Based on the accuracy of atomistic modeling methods such as molecular dynamics simulations, steered molecular dynamics method is performed... 

    Improving mixed-matrix membrane performance: Via PMMA grafting from functionalized NH2-UiO-66

    , Article Journal of Materials Chemistry A ; Volume 6, Issue 6 , 2018 , Pages 2775-2791 ; 20507488 (ISSN) Molavi, H ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    The major obstacles in gas separation by mixed-matrix membranes (MMMs) are poor dispersion and poor affinity between polymers and fillers. The present study demonstrates that these challenges can be overcome appropriately by utilizing a series of synthesized stand-alone MMMs. The matrix used was polymethyl methacrylate (PMMA) and the MMMs were synthesized by in situ polymerization of methyl methacrylate (MMA) in the presence of UiO-66, NH2-UiO-66 and vinyl group attached UiO-66. In situ polymerization of MMA in the presence of vinyl attached UiO-66 resulted in PMMA grafted UiO-66 with a high degree of grafting. Microscopic analysis by field emission scanning electron microscopy (FESEM)...