Loading...
Search for: motors
0.014 seconds
Total 315 records

    Simulation and experimental study of real-time robust control of hybrid stepper motor with QFT method in micro-step operation

    , Article Proceedings of the IEEE International Conference on Mechatronics 2004, ICM'04, Istanbul, 3 June 2004 through 5 June 2004 ; 2004 , Pages 364-368 ; 0780385993 (ISBN) Ghafari, A. S ; Vossoughi, G. R ; Sharif University of Technology
    2004
    Abstract
    Real-time linear robust control of a two phase hybrid stepper motor with Quantitative Feedback Theory method in micro-stepping operation is considered in this paper. Utilizing the phase currents as inputs, linear robust controller is derived for a Hybrid Stepper Motor that achieves robustness to parametric and dynamic uncertainties such as viscous friction, load torque, flux linkage and other uncertainties. Simulation and experimental studies are presented to show the efficiency of the control design approach  

    Hysteresis band determination of direct torque controlled induction motor drives with torque ripple and motor-inverter loss considerations

    , Article 2003 IEEE 34th Annual Power Electronics Specialists Conference, Acapulco, NM, 15 June 2003 through 19 June 2003 ; Volume 3 , 2003 , Pages 1107-1111 ; 02759306 (ISSN) Kaboli, S ; Zolghadri, M. R ; Emadi, A ; Sharif University of Technology
    2003
    Abstract
    The flux and torque hysteresis bands are the only gains to be adjusted in direct torque control (DTC). The torque ripple and harmonic loss of motor and switching loss of inverter greatly Influence them. Hence, these variables must be observed in the control process to maximize performance of the system. In this paper, the effects of flux and torque hysteresis bands on inverter switching loss, harmonic loss, and torque ripple of induction motor are investigated. In order to find their optimum values, a cost function consisting motor harmonic losses, torque ripples, and inverter switching losses is defined. Minimizing this cost function leads to the optimum value of the hysteresis bands of... 

    Design and electromagnetic analysis of a superconducting rotating machine

    , Article 2008 Australasian Universities Power Engineering Conference, AUPEC 2008, Sydney, NSW, 14 December 2008 through 17 December 2008 ; 2008 ; 9781424441624 (ISBN) Mardiha, M ; Vakilian, M ; Fardmanesh, M ; Sharif University of Technology
    2008
    Abstract
    A superconducting synchronous motor with an inductor containing bulk high temperature superconductor and BiSrCaCuo wires has been studied in this paper. The principle of operation is based on the interaction between the two spatial variable magnetic fields in the motor air gap. One of the two aforementioned magnetic fields is produced by the superconducting inductor based on magnetic shielding of high temperature superconductors. A procedure is developed to calculate the magnetic field produced by the inductor in the environment of the commercial finite element code ANSYS. The HTS motor is designed to develop 100 hp (the rated power). © 2008 Australasian Universities Power Engineering... 

    A combined model flux observer for vector control of traction asynchronous motors

    , Article 7th International Conference on Power Electronics and Drive Systems, PEDS 2007, Bangkok, 27 November 2007 through 30 November 2007 ; 2007 , Pages 1295-1300 ; 1424406455 (ISBN); 9781424406456 (ISBN) Tahami, F ; Chini Foroosh, S ; Sharif University of Technology
    2007
    Abstract
    Vector control induction motor drives are particularly sensitive to the variation of motor parameters. As a consequence, the field orientation is missed, leading to substantial degradation of performance. The performance of traction motors can be even more degraded by the substantial core loss due to their high supply frequency. In this paper, a flux observer using combined voltage and current model is presented. The influence of the core loss resistance is considered in motor models. This control system is robust against simultaneous variations of the stator resistance, rotor resistances, as well as the mismatch of the equivalent stator core-loss resistance, yielding a globally stable... 

    A new loss minimization approach with flux and torque ripples reduction of direct torque controlled permanent magnet synchronous motors

    , Article 2009 13th European Conference on Power Electronics and Applications, EPE '09, 8 September 2009 through 10 September 2009, Barcelona ; 2009 ; 9781424444328 (ISBN) Siahbalaee, J ; Vaez Zadeh, S ; Tahami, F ; Sharif University of Technology
    Abstract
    The main purpose of this paper is to minimize the loss while reducing the flux and torque ripples in permanent magnet synchronous motors (PMSMs) under direct torque control (DTC). Offline method is used to minimize the loss and obtain the optimal flux. To reduce the amount of computation, the optimal flux table is produced according to the conditions in which the machine works. To reduce the flux and torque ripples and to control the switching frequency, SVM-DTC method is applied. Simulation results depict a noticeable increase in efficiency of the motor and a reduction in flux and torque ripples  

    Investigating the properties of optimal sensory and motor synergies in a nonlinear model of arm dynamics

    , Article Proceedings of the International Joint Conference on Neural Networks, 14 June 2009 through 19 June 2009, Atlanta, GA ; 2009 , Pages 272-279 ; 9781424435531 (ISBN) Bayati, H ; Vahdat, S ; Vosoughi Vahdat, B ; International Neural Network Society; IEEE Computational Intelligence Society ; Sharif University of Technology
    2009
    Abstract
    The vertebrate nervous system produces a wide range of movements flexibly and efficiently, in spite of high complexity and nonlinearity of their motor system. The existence of building blocks in motor system known as synergies can be a convincing solution to overcome the computational complexity. In mathematical perspective, optimal feedback control as a theory of motor coordination provides a coherent framework that leads to optimal synergies. Alternatively, some experiments in vertebrates have shown the involvement of spinal motor primitives in movement execution. The goal of this study is first extracting optimal synergies in nonlinear dynamics case and then investigating their biological... 

    A high-performance vector-controlled PMSM drive with maximum torque per ampere operation

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 254-258 ; 9781424424054 (ISBN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    2008
    Abstract
    Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, e.g. high efficiency and high power density. Particularly, permanent magnet synchronous motors are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller. ©... 

    A sensor fault tolerant drive for interior permanent-magnet synchronous motors

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 283-288 ; 9781424424054 (ISBN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    2008
    Abstract
    The study reported in this paper deals with the problem of developing a controller with tolerance to current sensor faults. To achieve this goal, two control strategies are considered. In the first method, field oriented control and a developed observer are used in case of no fault. The second approach is concerned with fault tolerant strategy based on an observer for faulty conditions. Current sensors failures are detected and the current will be estimated successfully in order to allow continuous operation of the vector control. Based on the motor model, currents can be estimated using a nonlinear observer. A decoupling current vector control strategy is developed to ensure high... 

    A predictive loss minimisation direct torque control of permanent magnet synchronous motors

    , Article Australian Journal of Electrical and Electronics Engineering ; Volume 9, Issue 1 , 2012 , Pages 89-98 ; 1448837X (ISSN) Siahbalaee, J ; Vaez Zadeh, S ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    Although permanent magnet synchronous motors (PMSMs) are inherently of high efficiency, their efficiency is enormously dependent on their control strategy. The purpose of this paper is to improve the efficiency of PMSMs under a direct torque control (DTC) method. The main idea behind the proposed method is to predict a required small change of the statorflux amplitude at each sampling period to reduce the machine electrical loss before the change is applied. Accordingly, at every sampling time, a voltage vector is predicted and applied to the machine to change the flux amplitude in a xvay that the electrical loss decreases. The results of simulation show significant improvement in the... 

    Maximum torque per ampere control of permanent magnet synchronous motor using genetic algorithm

    , Article Telkomnika ; Volume 9, Issue 2 , 2011 , Pages 237-244 ; 16936930 (ISSN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    Abstract
    Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, i.e. high efficiency and high power density. Particularly, PMSMs are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller  

    Modeling and optimization of an elliptical shape ultrasonic motor using combination of finite element method and design of experiments

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 8, Issue PARTS A AND B , 2010 , Pages 491-496 ; 9780791844458 (ISBN) Sanikhani, H ; Akbari, J ; Shahidi, A. R ; Darki, A. A ; Sharif University of Technology
    2010
    Abstract
    Standing-wave ultrasonic motors are a modern class of positioning systems, which are used to deliver a high precision linear or rotary motion with an unlimited stroke. The design process should be performed through an effective optimization algorithm in order to guaranty proper and efficient function of these motors. An optimization method of ultrasonic motors is proposed based on the combination of finite element method and factorial design as a design of experiments in this study. The results show the ability of this method in optimal design of ultrasonic motors especially those which have a complex structure and multi modes operation principle  

    Performance verification of saturated IPM bearingless motors considering magnetic pull variation

    , Article Proceedings - 2016 IEEE International Power Electronics and Motion Control Conference, PEMC 2016, 25 September 2016 through 28 September 2016 ; 2016 , Pages 643-649 ; 9781509017980 (ISBN) Faiz, J ; Nasiri Gheidari, Z ; Rahman, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Interior permanent magnet (IPM) bearingless motors are becoming a good choice for high-speed applications. In these motors, reducing the thickness of the PM leads to the increase of the radial forces which affects the demagnetizing fields. Various types of PM motors have so far been recommended for enhancement of the radial forces and torque. In the proposed IPM motor the d-axis flux-linkage and the q-axis torque component are raised due to the armature reaction and this saturates the stator teeth. In addition, the magnetic attraction force generated by displacement force depends on the armature reaction. The mathematical model of IPM bearingless motor based on the dq transformation,... 

    Cogging force mitigation techniques in a modular linear permanent magnet motor

    , Article IET Electric Power Applications ; Volume 10, Issue 7 , 2016 , Pages 667-674 ; 17518660 (ISSN) Tootoonchian, F ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Modular linear doubly salient permanent magnet motors are well adapted to linear propulsion systems because of their distinct characteristics, such as high efficiency and power density, reduced maintenance and initial cost, low noise and permanent magnet (PM) leakage flux, and fault tolerance capability. However, such motors suffer from high cogging thrust. In this study, various techniques based on previously proposed methods for PM machines are applied on the studied motor and evaluated by using non-linear three-dimensional time-stepping finite element analysis; three novel, optimised techniques are then presented. The techniques presented are based on the minimisation of the variation in... 

    Design and analysis of an elliptical-shaped linear ultrasonic motor

    , Article Sensors and Actuators, A: Physical ; Volume 278 , 2018 , Pages 67-77 ; 09244247 (ISSN) Sanikhani, H ; Akbari, J ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A linear ultrasonic motor (LUSM) with an elliptical-shaped metallic stator and two orthogonal vibration modes is presented in this research. The driving tip's desired vibration is generated by the excitation of two piezoelectric actuators installed inside the stator by two sinusoidal voltages with ±[Formula presented] phase difference. The working principle of the motor is described and mathematically formulated. Furthermore, finite element analysis and parametric optimization are performed to finalize the motor design. A prototype of the motor is fabricated and evaluated by identification and operation tests. The experimental and numerical characteristic curves of the motor are presented... 

    Experimental study of fuel regression rate in an HTPB/N2O hybrid rocket motor

    , Article Scientia Iranica ; Volume 25, Issue 1 , 2018 , Pages 253-265 ; 10263098 (ISSN) Rezaei, H ; Soltani, M. R ; Mohammadi, A. R ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    The performance of an HTPB/N2O hybrid motor was experimentally investigated. A hybrid motor was designed and manufactured in a laboratory with the purpose of studying the effects of various parameters on the motor's performance, including fuel regression rate and specific impulse. A series of tests were conducted to find a correlation between the fuel regression rate and the oxidizer's mass flux. The effects of chamber's pressure on the regression rate as well as other performance parameters were investigated. While the burning rate did not change dramatically, both the efficiency and ISP of the motor increased. The local fuel regression rate and the fuel port were also calculated. In... 

    An Improved aggregated model of residential air conditioners for FIDVR studies

    , Article IEEE Transactions on Power Systems ; Volume 35, Issue 2 , 2020 , Pages 909-919 Hajipour, E ; Saber, H ; Farzin, N ; Karimi, M. R ; Hashemi, S. M ; Agheli, A ; Ayoubzadeh, H ; Ehsan, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Stalling of residential air conditioners (RACs) following a transient fault can delay the voltage recovery ranging from 3 to 20 seconds. This phenomenon is referred to as fault-induced delayed voltage recovery (FIDVR). Several aggregated RAC models have been presented to replicate the actual FIDVR events. However, they usually have two main drawbacks as: i) considering independent stalling voltage and stalling time for all RACs, ii) resulting in only two ultimate modes; either 100% stalled or 100% normal running. This paper amends the abovementioned shortcomings by proposing a simple and effective performance-based RAC model. The proposed model utilizes a simple explicit relation between the... 

    Efficiency map of a switched reluctance motor using finite element method in vehicular applications

    , Article 7th Internatonal Conference on Power Electronics, ICPE'07, Daegu, 22 October 2007 through 26 October 2007 ; 2007 , Pages 644-649 ; 9781424418725 (ISBN) Mokhtari, H ; Tara, E ; Sharif University of Technology
    IEEE Computer Society  2007
    Abstract
    Switched Reluctance Motors (SRMs), which are simple and reliable motors, have attracted interest for electric vehicle propulsion systems. It is shown that an SRM offers a good performance at high acceleration and low speed driving conditions. Efficiency map of an electric motor is a very important characteristic specially when the motor is to be used in a wide range of speed and load variations, which is the case in electric propulsion systems. In this research, the efficiency map of an SRM is derived using a combination of the Finite Element Method (FEM) and a mathematical model. This efficiency map has been used for different driving cycles to test the SRM performance as a vehicle... 

    Performance analysis of outer-rotor single-phase induction motor based on magnetic equivalent circuit

    , Article IEEE Transactions on Industrial Electronics ; Volume 68, Issue 2 , 2021 , Pages 1046-1054 ; 02780046 (ISSN) Saneie, H ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Single-phase, outer-rotor squirrel cage induction motors are widely used in ceiling fan applications. Furthermore, they can be employed for pumps, and in-wheel hub drives. In this article, an analytical model based on magnetic equivalent circuit is proposed to evaluate the performance of the motor. The influence of rotor slots' skewing, stator end windings, slots' leakage inductance, and core saturation are included in the model. Furthermore, the windings' copper losses and the core's iron losses are calculated using the proposed model. The results of the presented model are compared with those of time variant finite element analysis (TVFEA) and experimental measurements close agreement... 

    Extracting Synergies in Nonlinear Dynamics and Investigating their Neural Basis

    , M.Sc. Thesis Sharif University of Technology Bayati, Hamid Reza (Author) ; Vosoughi Vahdat, Bijan (Supervisor)
    Abstract
    The existence of motor synergies in motor system as a tool for reducing degrees of freedom has been always debated. In the last two decades some experiments in vertebrates show the existence of motor primitives in spinal cord. In additional by recording electromyogram from frog some regular patterns have been shown. Recently, a motor coordination model based on stochastic optimal feedback control has extracted synergies by mathematical formulation. In addition, according to this model synergies are the optimal solution of the problem and not for simplifying it. However, this model is investigated in linear dynamics. In this thesis, first, an inverse method for extracting synergies is... 

    Fault Detection in Centrifugal Pump Using Current Signature Analysis of Induction Motor and Vibration

    , M.Sc. Thesis Sharif University of Technology Mahdavifar, Saeed (Author) ; Behzad, Mehdi (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Pumps are widely used in oil and gas industry. Therefore condition monitoring for this type of equipment is very important. The motor current signature analysis (MCSA) technique as one of the condition monitoring techniques is very effective in the industry, but it is less used in industry. All conventional methods require additional sensors to be installed in the system; current signature analysis as a sensorless method can reduce the cost of condition monitoring. In this study, motor current signature analysis technique was used to diagnosis a centrifugal pump with a capacity of 187 kW from the refinery industry. The impeller wearing ring clearance problem has been investigated. This...