Loading...
Search for: nanocomposites
0.011 seconds
Total 1027 records

    Nanostructured ternary composites of PPy/CNT/NiFe2O4 and PPy/CNT/CoFe2O4: Delineating and improving microwave absorption

    , Article Comptes Rendus Chimie ; Volume 21, Issue 9 , 2018 , Pages 862-871 ; 16310748 (ISSN) Ghashghaei, E ; Kheirjou, S ; Asgari, S ; Kazerooni, H ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    Two different ternary nanocomposites, PPy/CNT/CoFe2O4 and PPy/CNT/NiFe2O4, were synthesized by in situ polymerization method. The resulting composites were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. They were evaluated with the aim of investigating microwave absorption properties. The results showed that the value of microwave reflection decreases as that of prepared nanocomposites increases. This happens with increase in the PPy content and polymerization on the surface. © 2018 Académie des sciences  

    A novel nanocomposite with superior antibacterial activity: a silver-based metal organic framework embellished with graphene oxide

    , Article Advanced Materials Interfaces ; Volume 5, Issue 11 , 3 April , 2018 ; 21967350 (ISSN) Dadashi Firouzjaei, M ; Arabi Shamsabadi, A ; Sharifian Gh, M ; Rahimpour, A ; Soroush, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Silver-based nanomaterials have attracted considerable attention due to their antimicrobial activities. In this work, a silver (Ag)-based metal organic framework (Ag-MOF) is embellished with graphene-oxide (GO), leading to the fabrication of a novel Ag-based nanocomposite (GO-Ag-MOF) whose biocidal activity is higher than those of Ag-MOF and GO nanomaterials. The nanocomposite is characterized using X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectra, ultraviolet−visible absorption spectra, X-ray powder diffraction, dynamic light scattering, and nitrogen gas adsorption/desorption. The characterization shows that... 

    N-doped ZnO-CuO nanocomposite prepared by one-step ultrasonic spray pyrolysis and its photocatalytic activity

    , Article Chemical Physics Letters ; Volume 705 , 2018 , Pages 19-22 ; 00092614 (ISSN) Rahemi Ardekani, S ; Sabour Rouhaghdam, A ; Nazari, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Nanocomposite thin film of N-doped ZnO-CuO was deposited on glass substrate using ultrasonic spray pyrolysis method. Zinc acetate, copper acetate and ammonium acetate with different molar ratios were dissolved in water and used as precursors. A crumpled-shape morphology consisting of nanometer-sized particles was observed with FESEM. The elemental composition was evaluated with EDX analysis and the presence of nitrogen, oxygen, copper and zinc was confirmed. XRD analysis revealed the presence of ZnO and CuO crystalline phases with crystallite size of about 18 nm. The prepared nanocomposites exhibited high photocatalytic activity in degradation of methyl orange under UV light irradiation. ©... 

    Immobilization of nickel ions onto the magnetic nanocomposite based on cross-linked melamine groups: effective heterogeneous catalyst for N-arylation of arylboronic acids

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 2 , February , 2018 ; 02682605 (ISSN) Pourjavadi, A ; Keshavarzi, N ; Matloubi Moghaddam, F ; Hosseini, S. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    A new magnetic heterogeneous catalyst was synthesized by immobilization of nickel ions onto a cross-linked polymeric nanocomposite composed of cyanuric chloride, ethylenediamine and functionalized magnetic nanoparticles. The resulting nitrogen rich support was capable of adsorbing large amounts of nickel ions (1.20 mmol g−1). The synthesized catalyst was characterized using AAS, TEM, FT-IR, EDX, TGA, SEM, BET and XRD techniques. The performance of the prepared catalyst was investigated in the C-N coupling of arylamines with aryl boronic acids. The reaction was carried out under a mild condition and good to moderate to good yields of products was obtained using only 5.0 mol% of the catalyst.... 

    Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications

    , Article Food Hydrocolloids ; Volume 112 , 2021 ; 0268005X (ISSN) Riahi, Z ; Priyadarshi, R ; Rhim, J. W ; Bagheri, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Gelatin-based functional films were prepared by the addition of grapefruit seed extract (GSE, 5 wt% based on gelatin) and various amounts of TiO2 (0.5, 1.0, 3.0, and 5.0 wt% based on gelatin). TiO2 was evenly dispersed in the gelatin film, but the film surface roughness was increased as the concentration of TiO2 increased. The mechanical strength and water contact angle (WCA) of the composite film were the highest, while the water vapor permeability (WVP) was the lowest when 0.5 wt% TiO2 was used. The addition of GSE slightly reduced the UV light transmittance, but the addition of TiO2 almost completely prevented the UV light transmission. The addition of GSE and TiO2 did not significantly... 

    Efficient inductively heated shape memory polyurethane acrylate network with silane modified nanodiamond@Fe3O4 superparamagnetic nanohybrid

    , Article European Polymer Journal ; Volume 159 , 2021 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Janmaleki, M ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Multifunctional magnetic shape memory polymer (SMP) nanocomposites with high sensitivity was synthesized through inclusion of silane functionalized nanodiamond@Fe3O4 (S-NDF) hybrid nanoparticle into polycaprolactone (PCL) based polyurethane acrylate (PUA) matrix followed by in situ crosslinking of the matrix. Highly biocompatible and superparamagnetic nanodiamond(ND)@Fe3O4 nanohybrids were synthesized through in situ co-precipitation method. The morphological analysis suggested that S-NDFs filled PUAs (2 to 9 wt% loadings) well interacted with both soft and hard domains of the matrix. The base polymer and the nanocomposites presented excellent shape fixity ratio (above 97%) and shape... 

    In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate

    , Article Surfaces and Interfaces ; Volume 24 , 2021 ; 24680230 (ISSN) Ahmadi, R ; Asadpourchallou, N ; Koozegar Kaleji, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatibility materials such as Ti6Al4V alloy have many medical applications, but their corrosion resistance and antibacterial properties are low, which limits their medical application. Therefore, to improve these challenges in this study, HAp + 15 wt% TiO2 + 5 wt% Ag nanocomposite coating was applied on Ti6Al4V/TiO2 substrate by sol-gel dip method and sintered at 550 °C. The TiO2 layer was pre-formed on the Ti6Al4V substrate using the gel-sol process. The results showed that the nanocomposite was synthesized correctly, and the particle size was in range of 40–90 nm. The evaluation of the coatings developed showed that TiO2/HAp + 15 wt% TiO2 + 5 wt% Ag coating had higher adhesion... 

    In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate

    , Article Surfaces and Interfaces ; Volume 24 , 2021 ; 24680230 (ISSN) Ahmadi, R ; Asadpourchallou, N ; Koozegar Kaleji, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatibility materials such as Ti6Al4V alloy have many medical applications, but their corrosion resistance and antibacterial properties are low, which limits their medical application. Therefore, to improve these challenges in this study, HAp + 15 wt% TiO2 + 5 wt% Ag nanocomposite coating was applied on Ti6Al4V/TiO2 substrate by sol-gel dip method and sintered at 550 °C. The TiO2 layer was pre-formed on the Ti6Al4V substrate using the gel-sol process. The results showed that the nanocomposite was synthesized correctly, and the particle size was in range of 40–90 nm. The evaluation of the coatings developed showed that TiO2/HAp + 15 wt% TiO2 + 5 wt% Ag coating had higher adhesion... 

    Synthesis of Graphene Oxide-based Polymer Nanocomposites and Investigation of Their Ability in Dye Adsorption

    , Ph.D. Dissertation Sharif University of Technology Nazari, Mojtaba (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    In this project, polymer nanocomposites containing graphene oxide were prepared and used for adsorption of several cationic and anionic dyes. In most cases, these nanocomposites were prepared as three-dimentional polymer networks which contain graphene oxide. Nanocomposites with direct grafting of polymer chains onto the surface of graphene oxide were also prepared. Graphene oxide is an oxidized carbonaceous material with unique properties. This material has high surface area, good mechanical strength and various functional groups. Polymeric compounds with different functional groups, structures and properties can be prepared and used. By preparing composites of graphene oxide and polymers,... 

    Property Investigation of Poly (Ethylene Co-vinyl Acetate)/Poly (l-Lactic Acid)/Organo Clay Nanocomposites

    , Article Journal of Polymers and the Environment ; Volume 27, Issue 12 , 2019 , Pages 2886-2894 ; 15662543 (ISSN) Torabi, H ; Ramazani SaadatAbadi, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In this study, EVAc/PLA/organo clay nanocomposites were prepared via solution mixing method. The SEM images were used to investigate the morphology of nanocomposites revealing no phase separation or agglomeration of disperse phase in EVAc/PLA blends and nanocomposites. SAXS spectra confirmed the intercalated morphology of nanocomposites. Soil burial test were carried out and the rate of degradation of the samples were measured indirectly. Oxygen gas permeability of EVAc was slightly decreased by adding PLA to the matrix, when small loads of clay caused dramatic improvement in barrier properties. Melt rheological frequency sweep test illustrated the compatibility of EVAc with low contents of... 

    High-performance thin-film nanocomposite (TFN) forward osmosis (FO) membranes incorporated with porous hydrophobic-core/hydrophilic-shell nanoparticles

    , Article Desalination ; Volume 515 , 2021 ; 00119164 (ISSN) Bagherzadeh, M ; Bayrami, A ; Shekari, Z ; Amini, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The current article discusses some unprecedented information about the improvement in forward osmosis (FO) performance of polyethersulfone/polyamide (PES/PA) membranes, mainly focused on water flux and selectivity along with resistance to fouling phenomenon; which itself is brought in by the introduction of pre-modified zeolitic imidazolate framework-8 MOF nanoparticles. An investigation has been conducted on ZIF-8 nanoparticles surface with hydrophilicity feature to evaluate their potential for utilization in active polyamide layer of FO membranes for the first time, free from any decrease in water flux value (when hydrophobic ZIF-8 is exploited solely) and selectivity (when mSiO2 with... 

    Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance

    , Article Desalination ; Volume 521 , 2022 ; 00119164 (ISSN) Bayrami, A ; Bagherzadeh, M ; Navi, H ; Chegeni, M ; Hosseinifard, M ; Amini, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the current study, the prospect improvements on desalination and anti-fouling performance of polyamide (PA)-based TFN membranes modified with MIL-53-NH-Asp have been investigated. MIL-53-NH2 nanoparticles (NPs) have been treated through a single-step post-synthesis modification reaction to enhance the hydrophilicity feature and compatibility with the PA layer. Various concentrations of synthesized NPs were dispersed in an aqueous phase consisting m-phenylenediamine and 2,6-diaminopyridine monomers for incorporation in the PA rejection layer. Analysis data of fabricated membranes provide evidence of changes in their physico-chemical properties after NPs incorporation. In comparison with... 

    A Multi-scale Solution for Prediction of Mechanical Properties of Polymeric Nano Carbon Nanocomposites with Using Stochastic Approach

    , M.Sc. Thesis Sharif University of Technology Jazzab, Mohammad Javad (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    The use of nanocomposite materials in various industries such as aerospace, oil and gas, automotive, etc. has become increasingly widespread due to its unique thermal and mechanical properties. Due to the problems and costs of the production process and experimental testing for optimal construction, it is necessary to propose a low-cost method for estimating the mechanichal properties of these materials. In this research, the mechanical properties of polymetric nano carbon nanocomposites have been estimated by multi-scale method with using finite element analysis by Abaqus software. the mechanical properties of nanocarbon composites have been extracted by using the multi-scale method that... 

    Electrical and mechanical characterization of high-density polyethylene/ethylene vinyl acetate/organoclay nanocomposite

    , Article IEEE Transactions on Dielectrics and Electrical Insulation ; Volume 20, Issue 5 , 2013 , Pages 1772-1779 ; 10709878 (ISSN) Mahmoudi, J ; Eesaee, M ; Vakilian, M ; Sharif University of Technology
    2013
    Abstract
    A ternary dielectric is made of high density polyethylene (HDPE) and organoclay (OC) nanocomposites, through mixing granuls of ethylene vinyl acetate (EVA). The morphological properties of nanocomposites are examined using X-ray diffraction (XRD) spectra and transmission electron microscopy (TEM) which intercalate/exfoliate morphology of clay particles. It is shown that the electrical and mechanical properties of HDPE/EVA binary blend will be enhanced significantly when OC was treated with EVA compound. The insulation material which is developed in this work can be employed to insulate the adjacent core steel sheets of a high voltage transformer  

    Nanoindentation creep behavior of nanocomposite Sn-Ag-Cu solders

    , Article Journal of Electronic Materials ; Volume 41, Issue 8 , 2012 , Pages 2057-2064 ; 03615235 (ISSN) Roshanghias, A ; Kokabi, A. H ; Miyashita, Y ; Mutoh, Y ; Ihara, I ; Guan Fatt, R. G ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    High-density, ultrasmall-pitch electronic applications require miniaturized solder bumps with improved thermomechanical performance. In addition, novel techniques which are able to precisely characterize these solder bumps are needed. One approach to meeting both of these requirements is to make use of recently developed nanocomposite solders with enhanced creep resistance, and to characterize these solders using a nanoindentation technique. In the present study, the creep behavior of ceria-reinforced nanocomposite solder foils fabricated by the accumulative roll-bonding process was characterized using a depth-sensing nanoindentation technique. It was found that the creep resistance of the... 

    All optical switch based on Fano resonance in metal nanocomposite photonic crystals

    , Article Optics Communications ; Volume 284, Issue 8 , 2011 , Pages 2230-2235 ; 00304018 (ISSN) Asadi, R ; Malek Mohammad, M ; Khorasani, S ; Sharif University of Technology
    Abstract
    We investigate the potential of plasmonic resonance in metal nanocomposite materials for the design of photonic crystal all optical switches by numerical methods. We study the absorption effect of the plasmonic resonance on the Fano resonances of one dimensional photonic crystal slabs covered by a metal nanocomposite layer. It is shown that the absorption reduces the contrast of the Fano resonances. However, for adequate metal nanoparticle concentrations it is possible to achieve both sufficiently sharp Fano resonance and strong Kerr nonlinearity, which provides a suitable condition for the design of high contrast and low threshold switches  

    Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution

    , Article RSC Advances ; Volume 5, Issue 41 , Mar , 2015 , Pages 32263-32271 ; 20462069 (ISSN) Pourjavadi, A ; Nazari, M ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Magnetic nanocomposite hydrogels containing different amounts of graphene oxide were synthesized and characterized by FTIR, XRD, TGA, SEM, TEM, VSM and UV-vis spectroscopy. The prepared hydrogels were used as adsorbents for removal of a cationic dye, crystal violet, from water. The kinetics and isotherm of adsorption and the effect of different experimental conditions such as graphene oxide content, pH of the solution, contact time, adsorbent dosage and initial dye concentration on adsorption capacity were then investigated. Parameters related to kinetics and isotherm models were calculated and discussed. It was found that adsorption is well-described by pseudo-second-order kinetics and... 

    Contribution of ordered-inordered phenomenon within the interphase region toward increasing elastic modulus in CNT/polymer nanocomposites

    , Article Materials Science and Technology Conference and Exhibition 2015, MS and T 2015, 4 October 2015 through 8 October 2015 ; Volume 1 , October , 2015 , Pages 595-602 ; 9781510813939 (ISBN) Shayesteh Zeraati, A ; Goodarzi Hosseinabadi, H ; NACE International ; Sharif University of Technology
    Association for Iron and Steel Technology, AISTECH  2015
    Abstract
    Exceptional mechanical properties of carbon nanotubes (CNTs) such as high elastic modulus, stiffness and tensile strength have made them as promising reinforcement in polymer nanocomposite systems. The characteristics of CNTs/polymer interphase region directly affect the efficiency of nanotubes for improving the nanocomposite mechanical properties. In this work, the influence of chains alignment within the interphase region on elastic response of the nanocomposite is assessed using a novel ordered-inordered approach. The applicability of the presented approach is examined by implementing the approach on a series of reported data available in the literature. The effects of CNT content,... 

    Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy

    , Article Science and Technology of Welding and Joining ; 2016 , Pages 1-16 ; 13621718 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Gerlich, A. P ; Nosko, M ; Švec, P ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Owing to the advantages of nanocomposites for structural applications, we present microstructural evolutions and texture development during dissimilar friction stir welding (DFSW) of an Al-matrix hybrid nanocomposite (Al-2 vol.-% Al2O3-2 vol.-% SiC) with AA1050. It is shown that DFSW can successfully be performed at a rotating speed of 1200 rev min−1 and a transverse speed of 50 mm min−1 while locating the nanocomposite at retreating side. Formation of macro-, micro-, and nano-mechanical interlocks between dissimilar base materials (BMs) as a result of FSW tool stirring action possessed an impact influence on the mechanical performance of dissimilar welds. Electron microscopy revealed... 

    Synthesis and characterization of magnetic silica-supported Mn(II)-substituted polyoxophosphotungstate as catalyst in sulfoxidation reaction

    , Article Journal of Nanoparticle Research ; Volume 18, Issue 10 , 2016 ; 13880764 (ISSN) Moradi Shoeili, Z ; Zare, M ; Bagherzadeh, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    Abstract: Polyoxometalate-functionalized magnetic nanoparticles (Fe3O4@SiO2–MnPOW) were successfully synthesized via covalent anchoring of Mn(II)-substituted phosphotungstate on ammonium-modified Fe3O4@SiO2 nanoparticles. The complete characterization of nanoparticles has been carried out by scanning electron microscope, energy-dispersive X-ray, X-ray diffraction, Fourier transform infrared and elemental analysis. The resulting nanocomposites were efficient catalysts for the selective oxidation of sulfides with different green oxidants in good to excellent yields and also high selectivity. Leaching and recycling tests showed that the nanocatalyst can be reused several times without...