Loading...
Search for: nanofluidics
0.01 seconds

    Reduction of fine migration in different pH and salinity conditions using nanofluid

    , Article SPE - European Formation Damage Conference, Proceedings, EFDC ; Volume 2 , 2013 , Pages 737-743 ; 9781627486101 (ISBN) Asset, Y ; Pourafshary, P ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Movement and transportation of fine particles in formations leads to clogging the pores and reduction in permeability. This type of formation damage is stronglycontingent upon water salinity and ionic conditions in the formation. The main parameters which control the particle release are the interactions and forces between particles and porous medium surfaces. Changing salinity which leads to pH alteration, affects these interactions and subsequently the fine migration process. Hence, pH and salinity variations should be considered to study and evaluate the portion of fine migration in formation damage. The principal challenge in this research therefore, is to try to change the surface... 

    A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids

    , Article Energy Conversion and Management ; Volume 109 , 2016 , Pages 10-18 ; 01968904 (ISSN) Askari, S ; Lotfi, R ; Seif Kordi, A ; Rashidi, A. M ; Koolivand, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This study deals with an experimental investigation on the thermal performance of a mechanical wet cooling tower with counter flow arrangement by using multi-walled carbon nanotubes (MWNTs) and nanoporous graphene nanofluids. Stable nanofluids were prepared through two-step procedure by using water with properties taken from a working cooling tower in the South of Iran. Zeta potential revealed suitable stability of MWNTs and nanoporous graphene nanofluids. Thermal and rheological properties of the nanofluids were investigated. It was found that thermal conductivity increases by 20% and 16% at 45°C for MWNTs and nanoporous graphene nanofluids, respectively. The increase in density and... 

    Experimental investigation on the thermal performance of ultra-stable kerosene-based MWCNTs and Graphene nanofluids

    , Article International Communications in Heat and Mass Transfer ; Volume 108 , 2019 ; 07351933 (ISSN) Askari, S ; Rashidi, A ; Koolivand, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A simple chemisorption method was used to graft on the surface of MWCNTs and Graphene nanoparticles to prepare stable kerosene-based MWCNTs and Graphene nanofluids. The prepared nanofluids remained stable for more than five months and no sedimentation was observed. Regarding the effect of temperature on thermo-physical properties, it was observed that although increasing nanoparticle concentration led to an increase in the fluid viscosity, it was negligible enough at lower nanoparticle loading. Moreover, adding nanoparticles to the base fluid did not have any noticeable impact on the fluid density which was negligible even at high concentrations. The thermal conductivity improvement was... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; 2020 Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; Volume 42, Issue 22 , 2021 , Pages 1926-1948 ; 01457632 (ISSN) Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    Optimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review study

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 42-60 ; 01430750 (ISSN) Asadi, R ; Assareh, E ; Moltames, R ; Olazar, M ; Nedaei, M ; Parvaz, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Recently, numerous studies have focused on simulation and optimisation of combined cooling, heat, and power (CCHP) systems. This research, from a different perspective, aims to conduct a comprehensive review of the studies performed in the field of solar, geothermal or combined sources, and subsequently analysing the multi-objective evolutionary algorithms to identify the most efficient situation, which satisfy researchers' needs in order to attain a better performance in their ongoing or future research projects. It is worth noting that multi-objective optimisation in these cycles is based on optimising a thermodynamic term (exergy efficiency, thermal efficiency, etc.) and an economic term... 

    Remedial effects of metal oxide nanoparticles to treat suspension transport in saturated porous media

    , Article SPE - European Formation Damage Conference, Proceedings, EFDC ; Volume 1 , 2013 , Pages 478-488 ; 9781627486101 (ISBN) Arab, D ; Pourafshary, P ; Ayatollahi, S ; Habibi, A ; Sharif University of Technology
    2013
    Abstract
    Hydrocarbon production decline as a result of formation damage caused by fines migration has been widely observed in laboratory corefloods and natural flows in porous media. Permeability impairment due to fines migration is explained by different capture mechanisms of already released particles at some pore sites. Preventing detachment of in-situ particles from the rock surface during enhanced oil recovery (EOR) agent injection into the porous media has been reported recently. In this experimental study, the effect of five types of metal oxide nanoparticles; γ-AI2O3, ZnO, CuO, MgO and SiO: to adsorb the fine particles existing in the flowing suspension has been investigated. In each test,... 

    Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 428 , 2017 , Pages 457-463 ; 03048853 (ISSN) Amani, M ; Amani, P ; Kasaeian, A ; Mahian, O ; Kasaeian, F ; Wongwises, S ; Sharif University of Technology
    Abstract
    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe2O4/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is... 

    Simulation analysis of MHD hybrid Cu-Al2O3/H2O nanofluid flow with heat generation through a porous media

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19165-19179 ; 0363907X (ISSN) Ali, K ; Ahmad, S ; Nisar, K. S ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. The present work investigates the MHD laminar flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet immersed in a porous medium. The effect of induced magnetic field has also been taken into account. The flow model PDEs are rehabilitated into ordinary ones using a persuasive tool of similarity variables. The analogous system of dimensionless equations alongside the boundary conditions is numerically treated with the Successive-Over-Relaxation (SOR) technique. Flow and heat transfer aspects of... 

    Simulation analysis of MHD hybrid Cu-Al2O3/H2O nanofluid flow with heat generation through a porous media

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19165-19179 ; 0363907X (ISSN) Ali, K ; Ahmad, S ; Nisar, K. S ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. The present work investigates the MHD laminar flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet immersed in a porous medium. The effect of induced magnetic field has also been taken into account. The flow model PDEs are rehabilitated into ordinary ones using a persuasive tool of similarity variables. The analogous system of dimensionless equations alongside the boundary conditions is numerically treated with the Successive-Over-Relaxation (SOR) technique. Flow and heat transfer aspects of... 

    Molecular interaction and magnetic dipole effects on fully developed nanofluid flowing via a vertical duct applying finite volume methodology

    , Article Symmetry ; Volume 14, Issue 10 , 2022 ; 20738994 (ISSN) Ali, K ; Ahmad, S ; Ahmad, S ; Jamshed, W ; Hussain, S. M ; Tag El Din, E.S.M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Interpreting the complex interaction of nanostructured fluid flow with a dipole in a duct, with peripherally uniform temperature distribution, is the main focus of the current work. This paper also sheds light on the changes in the Nusselt number, temperature profiles, and velocity distributions for the fully developed nanofluid flow in a vertical rectangular duct due to a dipole placed near a corner of the duct. A finite volume approach has been incorporated for the numerical study of the problem. It is interesting to note the unusually lower values of the Nusselt number for the higher values of the ratio Gr/Re. Due to the nanostructure in the fluid, an enhancement in the Nusselt number has... 

    A self-similar approach to study nanofluid flow driven by a stretching curved sheet

    , Article Symmetry ; Volume 14, Issue 10 , 2022 ; 20738994 (ISSN) Ali, K ; Jamshed, W ; Ahmad, S ; Bashir, H ; Ahmad, S ; Tag El Din, E.S.M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Nano-fluids have considerable importance in the field of thermal development that relates to several industrial systems. There are some key applications in recent construction systems flow, as well as microscale cooling gadgets and microstructure electric gadgets for thermal migration. The current investigation concludes the study of electrically conducting nano-fluid flow and heat transfer analysis in two-dimensional boundary layer flow over a curved extending surface in the coexisting of magnetic field, heat generation and thermal radiation. The small sized particles of copper (Cu) are taken as nanoparticles and water is assumed to be the base fluid. We used quasi-linearization and central... 

    Imposed magnetic field impact on vortex generation in the laminar nanofluid flow: A computational approach

    , Article International Communications in Heat and Mass Transfer ; Volume 139 , 2022 ; 07351933 (ISSN) Ali, K ; Prakash, M ; Jamshed, W ; Ibrahim, R. W ; Ahmad, S ; Raizah, Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal manufacturing plants, nuclear power plants (which produce steam, by using thermal energy yielded during the nuclear fission, for spinning enormous turbines to generate electricity), and geothermal power plants are a few in the extensive list of technologies where different processes occur in high temperature environment in the presence of strong magnetic fields. Nanofluids (NFs), on the other hand, have been successful in achieving wide acceptance as the next generation coolant in the above mentioned industries as well as in the automobiles, heat exchangers, and steam boilers, owing to their remarkable thermal performance. These observations motivate the authors to explore the change... 

    Quasi-Linearization analysis for entropy generation in mhd mixed-convection flow of casson nanofluid over nonlinear stretching sheet with arrhenius activation energy

    , Article Symmetry ; Volume 14, Issue 9 , 2022 ; 20738994 (ISSN) Ali, K ; Faridi, A. A ; Ahmad, S ; Jamshed, W ; Hussain, S. M ; Tag-Eldin, E. S. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Thermal performance of magnetically driven Casson nanofluid over a nonlinear stretching sheet under the influence of entropy, activation energy and convective boundary conditions was analyzed numerically, employing the quasi-linearization method (QLM). The collective behavior of thermophoretic diffusion and Brownian motion along with special effects of viscous dissipation, thermal radiation, heat generation and joule heating are considered in the energy equation for the flow problem. The addition of nanoparticles helps to stabilize the flowing of a nanofluid and maintain the symmetry of the flowing structure. The governing highly nonlinear coupled differential equations of velocity,... 

    Quasi-linearization analysis for heat and mass transfer of magnetically driven 3rd-grade (Cu-TiO2/engine oil) nanofluid via a convectively heated surface

    , Article International Communications in Heat and Mass Transfer ; Volume 135 , 2022 ; 07351933 (ISSN) Ali, K ; Faridi, A. A ; Ahmad, S ; Jamshed, W ; Khan, N ; Alam, M. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The features of heat transferral capability between metallic (Cu) and non-metallic (TiO2) nanoparticles suspended in the engine-oil (EO) third-grade base-liquid has been analysed under the influence of strong magnetic field. The numerical investigation of system of coupled differential equations for third-grade nanofluid flow model is accomplished via Quasi-linearization method (QLM). The stretching horizontal sheet is heated through convective heat process assuming the special effects of thermal radiation, joule heating, heat generation and viscous dissipation in the energy equation. The mass suction and slip velocity at the boundary of the sheet has been taken into account to enhance... 

    How to improve the thermal performance of pulsating heat pipes: A review on working fluid

    , Article Renewable and Sustainable Energy Reviews ; Volume 91 , 2018 , Pages 630-638 ; 13640321 (ISSN) Alhuyi Nazari, M ; Ahmadi, M. H ; Ghasempour, R ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Pulsating Heat Pipes (PHPs) are cooling devices that are compact in size and have an ability to transfer heat in low temperature differences. Working fluids strongly affect the thermal performance of PHPs. In this paper, effects of some thermophysical parameters relating to working fluids, such as boiling point, latent heat of vaporization, surface tension, thermal conductivity and dynamic viscosity, are presented based on experimental and numerical studies done in recent years. Addition of nanoparticles to fluids, or making nanofuild, is a new method of improving thermophysical properties of fluids. Recently, many studies are carried out on thermophysical properties of nano-fuild. Results... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; 25 May , 2018 , Pages 1-13 ; 13886150 (ISSN) Akbari, A ; Saidi, M. H ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    Pulsating heat pipe (PHP) is a type of wickless heat pipe that has a simple structure and an outstanding thermal performance. Nanofluid is a type of fluid in which nanoparticles are dispersed in a base fluid and have generally a better thermal conductivity in comparison with its base fluid. In this article, the performance of a nanofluid PHP is investigated. Graphene/water nanofluid with a concentration of 1 mg mL−1 and TiO2 (titania)/water nanofluid with a concentration of 10 mg mL−1 are used as the working fluids. To simultaneously investigate the thermal performance and flow regimes in the PHP, a one-turn copper PHP with a Pyrex glass attached to its adiabatic section is used. A one-turn... 

    Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 135, Issue 3 , 2019 , Pages 1835-1847 ; 13886150 (ISSN) Akbari, A ; Saidi, M. H ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Pulsating heat pipe (PHP) is a type of wickless heat pipe that has a simple structure and an outstanding thermal performance. Nanofluid is a type of fluid in which nanoparticles are dispersed in a base fluid and have generally a better thermal conductivity in comparison with its base fluid. In this article, the performance of a nanofluid PHP is investigated. Graphene/water nanofluid with a concentration of 1 mg mL −1 and TiO 2 (titania)/water nanofluid with a concentration of 10 mg mL −1 are used as the working fluids. To simultaneously investigate the thermal performance and flow regimes in the PHP, a one-turn copper PHP with a Pyrex glass attached to its adiabatic section is used. A...