Loading...
Search for: nanosheet
0.005 seconds
Total 141 records

    The Morphological Effects of Surface Modified Mos2 Nanosheets and Mos2 Qd/G-C3n4 Heterostructure Prepared by Chemical Methods in Hydrogen Evolution Reaction (Her)

    , Ph.D. Dissertation Sharif University of Technology Shaker, Tayebeh (Author) ; Moshfegh, Alireza (Supervisor) ; Naseri, Naeimeh (Co-Supervisor)
    Abstract
    The sustainable development in societies and the global energy challenge requires usage of clean energy systems that have attracted the attention of many researchers in recent decades. One of the major challenges in generating renewable resources is the problem of energy storage and imbalance between supply and demand cycles. Hydrogen as one of the clean energy carriers and due to having the highest energy density in terms of weight, is one of the important research topics. From this point of view, the preparation of electrocatalysts for hydrogen production, based on available materials, via simple and environmentally friendly production methods, was considered in this research.... 

    Linear and Nonlinear Bending Analysis of Circular Sandwich Plates with FG Porous Core Reinforced with Graphene Nanoplatelets

    , M.Sc. Thesis Sharif University of Technology Hashemijoo, Mohammad Erfan (Author) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    In this study non-linear bending of circular sandwich plates with functionally graded (FG) porous core reinforced with graphene nanoplatelets (GPL) is investigated using refined shear deformation theory (RSDT). Displacement field of this theory is considered so that different theories can be introduced to estimate transverse shear strain. Equilibrium equations and boundary conditions are derived using minimum total potential energy principle. The equations are reformulated using potential and stress functions and analytical solution is obtained using perturbation method along with Fourier series. Validations are performed for two cases of linear and non-linear bending of circular plate and... 

    Construction of Pt nanoparticle-decorated graphene nanosheets and carbon nanospheres nanocomposite-modified electrodes: Application to ultrasensitive electrochemical determination of cefepime

    , Article RSC Advances ; Volume 4, Issue 15 , 2014 , Pages 7786-7794 ; ISSN: 20462069 Shahrokhian, S ; Hosseini Nassab, N ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    A novel ultrasensitive modified electrode was fabricated with a graphene nanosheets and carbon nanospheres (GNS-CNS)-based nanocomposite film as a powerful platform. Pt nanoparticles (PtNPs) were simply electrodeposited onto the GNS-CNS-coated glassy carbon electrode creating a PtNPs/GNS-CNS hybrid nanocomposite modified electrode. Scanning electron microscopy, energy dispersive X-ray spectroscopy and linear sweep voltammetry (LSV) techniques were used for the characterization of the prepared modified electrode. The results of investigation of electrochemical response characteristics of cefepime (CP) revealed a considerable improvement in the oxidation peak current of CP on PtNPs/GNS-CNS/GCE... 

    Adsorptive stripping differential pulse voltammetric determination of mebendazole at a graphene nanosheets and carbon nanospheres/chitosan modified glassy carbon electrode

    , Article Sensors and Actuators, B: Chemical ; Volume 185 , 2013 , Pages 669-674 ; 09254005 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    2013
    Abstract
    For the first time graphene nanosheets and carbon nanospheres/chitosan (GNS-CNS/CS) based nanocomposite film modified electrode was used for the electro-oxidation of mebendazole (MD). MD is a benzimidazole drug that is used to treat human infections caused by parasitic worms. MD causes slow immobilization and death of the worms by selectively and irreversibly blocking uptake of glucose. The electrochemical behavior of MD at GNS-CNS/CS modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetry in aqueous media at different pHs. The prepared electrode showed an excellent electrochemical activity toward the electro-oxidation of MD leading to a... 

    Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 30 , July , 2010 , Pages 12955-12959 ; 19327447 (ISSN) Akhavan, O ; Abdolahad, M ; Esfandiar, A ; Mohatashamifar, M ; Sharif University of Technology
    2010
    Abstract
    TiO2 nanoparticles were physically attached to chemically synthesized single-layer graphene oxide nanosheets deposited between Au electrodes in order to investigate the electrical, chemical, and structural properties of the TiO2/graphene oxide composition exposed to UV irradiation. X-ray photoelectron spectroscopy showed that after effective photocatalytic reduction of the graphene oxide sheets by the TiO2 nanoparticles in ethanol, the carbon content of the reduced graphene oxides gradually decreased by increasing the irradiation time, while no considerable variation was detected in the reduction level of the reduced sheets. Raman spectroscopy indicated that, at first, the photocatalytic... 

    Highly selective doped Pt[sbnd]MgO nano-sheets for renewable hydrogen production from APR of glycerol

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 39 , 2016 , Pages 17390-17398 ; 03603199 (ISSN) Larimi, A. S ; Kazemeini, M ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A series of M-doped Pt[sbnd]MgO (M = Pd, Ir, Re, Ru, Rh and Cr) sheet-shaped nano-catalysts were synthesized by the controlled co-precipitation method. The effects of M-doping on both the physicochemical and the chemisorption characteristics of Pt[sbnd]MgO catalysts were examined. The performance of the catalysts for the aqueous phase reforming (APR) of glycerol was also investigated. The APR activity of Pt[sbnd]M[sbnd]MgO catalysts depended on the type of the M dopant used. The APR activity varied in the following order: Rh > Pd > Cr > Ir > undoped ≈ Ru > Re, with the Rh-promoted catalyst having an activity of about one order of magnitude higher than the Re-promoted catalyst at 250 °C. It... 

    Fabrication and surface stochastic analysis of enhanced photoelectrochemical activity of a tuneable MoS2-CdS thin film heterojunction

    , Article RSC Advances ; Volume 6, Issue 20 , 2016 , Pages 16711-16719 ; 20462069 (ISSN) Zirak, M ; Ebrahimi, M ; Zhao, M ; Moradlou, O ; Samadi, M ; Bayat, A ; Zhang, H. L ; Moshfegh, A. Z ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A very simple and well-controlled procedure was employed to prepare CdS nanoparticle/few-layer MoS2 nanosheet/Indium tin oxide (ITO) thin film heterostructures. To tune and fabricate the CdS/MoS2(t)/ITO thin films with various surface topographies, first electrophoretic deposition (EPD) was used to deposit MoS2 nanosheets on the ITO substrate under an optimized applied potential difference (8 V) for different deposition times (t) of 30, 60, 120 and 240 s. Then, CdS nanoparticles were deposited via a successive ion layer adsorption and reaction (SILAR) technique. The highest photo-current density of 285 μA cm-2 was measured for the CdS/MoS2(60 s)/ITO sample, which was about 2.3 times higher... 

    Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models

    , Article Journal of Materials Science: Materials in Medicine ; Volume 28, Issue 5 , 2017 , 73 ; 09574530 (ISSN) Mahmoudi, N ; Eslahi, N ; Mehdipour, A ; Mohammadi, M ; Akbari, M ; Samadikuchaksaraei, A ; Simchi, A ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Abstract: In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; 2018 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    An electrochemical synthesis of reduced graphene oxide/zinc nanocomposite coating through pulse-potential electrodeposition technique and the consequent corrosion resistance

    , Article International Journal of Corrosion ; Volume 2018 , 2018 ; 16879325 (ISSN) Moshgi Asl, S ; Afshar, A ; Yaghoubinezhad, Y ; Sharif University of Technology
    Hindawi Limited  2018
    Abstract
    Pulse-potential coelectrodeposition of reduced graphene oxide/zinc (rGO-Zn) nanocomposite coating is directly controlled upon a steel substrate from a one-pot aqueous mixture containing [GO-/Zn2+]δ+ nanoclusters. GO nanosheets are synthesized by modified Hummer's approach while Zn cations are produced in the solution and deposited on GO nanosheets using anodic dissolution technique. Eventually, nanoclusters are reduced to rGO-Zn film through an electrochemical process. Chemical composition, surface morphology, and corrosion resistance of the thin film are characterized. Results show that the corrosion resistance of rGO-Zn coating is approximately 10 times more than the bare steel. © 2018 S.... 

    High-Performance, flexible, all-solid-state wire-shaped asymmetric micro-supercapacitors based on three dimensional CoNi2S4 nanosheets decorated-nanoporous Ni-Zn-P Film/Cu wire

    , Article Journal of Physical Chemistry C ; Volume 123, Issue 35 , 2019 , Pages 21353-21366 ; 19327447 (ISSN) Shahrokhian, S ; Naderi, L ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Demand increasing for next generation portable and miniaturized electronics has aroused much interest to explore microscale and lightweight energy storage devices. Herein, we demonstrate successful development of flexible wire-shaped micro-supercapacitors (micro-SCs) based on novel CoNi2S4/E-NZP film@Cu wire electrode. The etched Ni-Zn-P (E-NZP) film was synthesized by directly deposition of NZP film on Cu wire, followed by a chemical etching process. Alkaline etching treatment provides a micro- and mesoporous structure with high surface area and facilitates the penetration of electrolyte ions into the electrode matrix. Then, CoNi2S4 nanosheets as electroactive material are electrochemically... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Polyacrylamide-grafted magnetic reduced graphene oxide nanocomposite: preparation and adsorption properties

    , Article Colloid and Polymer Science ; 2019 ; 0303402X (ISSN) Pourjavadi, A ; Nazari, M ; Kohestanian, M ; Hosseini, S. H ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Magnetic reduced graphene oxide/polymer nanocomposites were prepared by in situ polymerization and grafting of polyacrylamide on the surface of functionalized magnetic reduced graphene oxide (rGO). Graphene oxide nanosheets were decorated with Fe3O4 nanoparticles, reduced and functionalized with 3-(trimethoxysilyl)propyl methacrylate, and then grafted with polyacrylamide. Grafting of polyacrylamide makes magnetic rGO hydrophilic and highly water dispersible. The prepared material was used as adsorbent for removal of an anionic dye, Congo red, and a maximum adsorption capacity up to 166.7 mg g−1 was obtained. The kinetics and isotherm of adsorption and the effect of experimental condition on... 

    Construction of a ternary nanocomposite, polypyrrole/fe-co sulfide-reduced graphene oxide/nickel foam, as a novel binder-free electrode for high-performance asymmetric supercapacitors

    , Article Journal of Physical Chemistry C ; Volume 124, Issue 8 , 2020 , Pages 4393-4407 Karimi, A ; Kazeminezhad, I ; Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The development of asymmetric supercapacitors requires the design of electrode construction and the utilization of new electroactive materials. In this regard, an effective strategy is the loading of active materials on an integrated 3D porous graphene-based substrate such as graphene foam (GF). Herein, we successfully designed and fabricated a novel ternary binder-free nanocomposite consisting of polypyrrole, Fe-Co sulfide, and reduced graphene oxide on a nickel foam electrode (PPy/FeCoS-rGO/NF) via a facile, cost-effective, and powerful electrodeposition method for application in high-performance asymmetric supercapacitors. The monolithic 3D porous graphene foam (GF) obtained by the facile... 

    Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation

    , Article Separation and Purification Technology ; Volume 256 , 2021 ; 13835866 (ISSN) Fouladivanda, M ; Karimi Sabet, J ; Abbasi, F ; Moosavian, M. A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A straightforward three-stage method was applied to fabricate a super-hydrophobic mixed-matrix nanofiber membrane using the electrospinning method for desalination purpose. First, a hydrothermal technique was applied to synthesize a super-hydrophobic nano-sheet, called octadecylamine-reduced graphene oxide (ODA-rGO) with a water contact angle of 162°, which was then added to PVDF-HFP dope solution. After, 0.005 wt% LiCl was added to the dope solution to decrease the mean pore size by increasing solution conductivity. Moreover, some membranes were hot-pressed to improve liquid entry pressure (LEP). Eventually, a top-quality nanofiber membrane was synthesized using 0.1 wt% ODA-rGO and 0.005... 

    Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 37 , 2021 , Pages 44904-44915 ; 19448244 (ISSN) Ahmadi, H ; Moradi, H ; Pastras, C. J ; Abolpour Moshizi, S ; Wu, S ; Asadnia, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    With an ageing population, hearing disorders are predicted to rise considerably in the following decades. Thus, developing a new class of artificial auditory system has been highlighted as one of the most exciting research topics for biomedical applications. Herein, a design of a biocompatible piezoresistive-based artificial hair cell sensor is presented consisting of a highly flexible and conductive polyvinyl alcohol (PVA) nanocomposite with vertical graphene nanosheets (VGNs). The bilayer hydrogel sensor demonstrates excellent performance to mimic biological hair cells, responding to acoustic stimuli in the audible range between 60 Hz to 20 kHz. The sensor output demonstrates stable... 

    Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 37 , 2021 , Pages 44904-44915 ; 19448244 (ISSN) Ahmadi, H ; Moradi, H ; Pastras, C. J ; Abolpour Moshizi, S ; Wu, S ; Asadnia, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    With an ageing population, hearing disorders are predicted to rise considerably in the following decades. Thus, developing a new class of artificial auditory system has been highlighted as one of the most exciting research topics for biomedical applications. Herein, a design of a biocompatible piezoresistive-based artificial hair cell sensor is presented consisting of a highly flexible and conductive polyvinyl alcohol (PVA) nanocomposite with vertical graphene nanosheets (VGNs). The bilayer hydrogel sensor demonstrates excellent performance to mimic biological hair cells, responding to acoustic stimuli in the audible range between 60 Hz to 20 kHz. The sensor output demonstrates stable... 

    Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets

    , Article Journal of Alloys and Compounds ; Volume 904 , 2022 ; 09258388 (ISSN) Soltani, H ; Bahiraei, H ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, the effect of electrodeposition time on the super-capacitive performance of three-dimensional (3D) MnO2/g-C3N4 heterostructured electrodes was investigated. MnO2 nanoparticles were electrodeposited on the g-C3N4 nanosheets drop-casted on the Ni foam substrate. The microstructural analysis, carried out by FE-SEM and TEM, confirmed the homogeneous distribution of MnO2 nanoparticles on g-C3N4 nano-sheet layers. The electrochemical capacitive performances of the MnO2/g-C3N4 electrodes were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge tests, and electrochemical impedance spectra (EIS). The obtained results suggested that the supercapacitor (SC) performance of all... 

    Concurrent electrophoretic deposition of enzyme-laden chitosan/graphene oxide composite films for biosensing

    , Article Materials Letters ; Volume 308 , 2022 ; 0167577X (ISSN) Moharramzadeh, F ; Zarghami, V ; Mazaheri, M ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    We present a procedure for simultaneous deposition of enzyme-laden chitosan/reduced graphene oxide (rGO) film by electrophoretic deposition (EPD) for fast and efficient detection of glucose. The role of rGO nanosheets is studied on the EPD kinetics of the enzyme-laden suspensions. Investigating the performance of the biosensor by electrochemical techniques indicates its high sensitivity (9700 μA.mM−1.cm−2), low limit of detection (4 µM), and suitable selectivity. © 2021 Elsevier B.V  

    Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 1 , January , 2015 ; 13880764 (ISSN) Tavakoli, M. M ; Tayyebi, A ; Simchi, A ; Aashuri, H ; Outokesh, M ; Fan, Z ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Recently, hybrid graphene–quantum dot systems have attracted increasing attention for the next-generation optoelectronic devices such as ultrafast photo-detectors and solar energy harvesting. In this paper, a novel, one-step, reproducible, and solution-processed method is introduced to prepare hybrid graphene–PbS colloids by employing supercritical ethanol. In the hybrid nanocomposite, PbS quantum dots (~3 nm) are decorated on the reduced graphene oxide (rGO) nanosheets (~1 nm thickness and less than 1 micron lengths). By employing X-ray photoelectron and Raman and infrared spectroscopy techniques, it is shown that the rGO nanosheets are bonded to PbS nanocrystals through carboxylic bonds....