Loading...
Search for: natural-gas
0.011 seconds
Total 198 records

    Dynamic simulation of natural gas transmission pipeline systems through autoregressive neural networks

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 27 , 2021 , Pages 9851-9859 ; 08885885 (ISSN) Fakhroleslam, M ; Bozorgmehry Boozarjomehry, R ; Sahlodin, A. M ; Sin, G ; Mansouri, S. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Transmission of natural gas from its sources to end users in various geographical locations is carried out mostly by natural gas transmission pipeline networks (NGTNs). Effective design and operation of NGTNs requires insights into their steady-state and, particularly, dynamic behavior. This, in turn, calls for efficient computer-aided approaches furnished with accurate mathematical models. The conventional mathematical methods for the dynamic simulation of NGTNs are computationally intensive. In this paper, the use of autoregressive neural networks for cost-effective dynamic simulation of NGTNs is proposed. Considering the length, diameter, roughness, and elevation as the main... 

    A mixed epistemic-aleatory stochastic framework for the optimal operation of hybrid fuel stations

    , Article IEEE Transactions on Vehicular Technology ; Volume 70, Issue 10 , 2021 , Pages 9764-9774 ; 00189545 (ISSN) Faridpak, B ; Farrokhifar, M ; Alahyari, A ; Marzband, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The fast development of technologies in the smart grids provides new opportunities such as co-optimization of multi-energy systems. One of the new concepts that can utilize multiple energy sources is a hybrid fuel station (HFS). For instance, an HFS can benefit from energy hubs, renewable energies, and natural gas sources to supply electric vehicles along with natural gas vehicles. However, the optimal operation of an HFS deals with uncertainties from different sources that do not have similar natures. Some may lack in term of historical data, and some may have very random and unpredictable behavior. In this study, we present a stochastic mathematical framework to address both types of these... 

    Exergy analysis and optimization of natural gas liquids recovery unit

    , Article International Journal of Air-Conditioning and Refrigeration ; Volume 29, Issue 1 , 2021 ; 20101325 (ISSN) Khajehpour, H ; Norouzi, N ; Shiva, N ; Mahmoodi Folourdi, R ; Hashemi Bahremani, E ; Sharif University of Technology
    World Scientific  2021
    Abstract
    The Natural Gas Liquids (NGL) recovery unit is one of the processes that requires cooling. The sweetened gas enters this unit after the dehydration stage, and the final product called NGL Product is stored and ready for consumption or export. In this research, the first, one of the NGL units, is simulated with HYSYS software. Three types of processes with different cooling systems are studied using the exergy analysis method. Joule-Thomson's combination with the expander is selected for its high exergy efficiency, and the exergy efficiency function has been selected as the objective function 1 to optimize this process mathematically based on this study's findings. The critical term in this... 

    A unified benchmark for security and reliability assessment of the integrated chemical plant, natural gas and power transmission networks

    , Article Journal of Natural Gas Science and Engineering ; Volume 96 , 2021 ; 18755100 (ISSN) Kheirkhah Ravandi, Z ; Bozorgmehry Boozarjomehry, R ; Babaei, F ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    This work presents a simulation framework to investigate the rigorous transient behavior of integrated systems comprising natural gas and power transmission networks, and a chemical plant whose feedstock is natural gas. This framework entails dynamic models for the gas transmission network and the SynGas plant, and a continuous-time AC-power flow formulation with dispatchable loads. It addresses the following key challenges: (i) analyzing energy and chemical system interdependencies, and their impacts on each other's supply reliability and security; (ii) providing an environment conducive to settling a critical question of how to prioritize the natural gas consumption as fuels of power... 

    A thorough analysis of renewable hydrogen projects development in Uzbekistan using MCDM methods

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 61 , 2021 , Pages 31174-31190 ; 03603199 (ISSN) Mostafaeipour, A ; Hosseini Dehshiri, S. S ; Hosseini Dehshiri, S. J ; Almutairi, K ; Taher, R ; Issakhov, A ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The energy supply system of Uzbekistan is not well positioned to meet the rapidly rising domestic energy demand of this country. Uzbekistan's current energy supply system is outdated and has very low diversity, as most of its energy comes from natural gas. In addition to producing immense amounts of greenhouse gas and environmental pollution, this situation is untenable considering the eventual depletion of fossil fuel reserves of this country. Uzbekistan's renewable energy sector is highly undeveloped, a situation that can be attributed to the lack of coherent policies for the advancement of renewable power and the low price of natural gas. However, this country has significant untapped... 

    Thermodynamic analysis and process optimization of a natural gas liquid recovery unit based on the Joule – Thomson process

    , Article Journal of Natural Gas Science and Engineering ; Volume 96 , 2021 ; 18755100 (ISSN) Nabati Shoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A thermodynamic analysis was conducted on the Joule-Thomson (JT) process to improve separation performance and exergy efficiency of a three-stage throttling process in a natural gas liquid (NGL) recovery plant. The JT inversion curve (JTIC) along with the phase envelope diagram (PED) were used to study phase transition during the throttling process. Three different objective functions—maximization of NGL recovery rate, improvement of cooling performance, and minimization of the exergy destruction—were investigated in this study to increase the NGL recovery rate with minimum energy consumption. It was observed that the improvement of cooling performance did not always increase the NGL... 

    Optimization of separator internals design using CFD modeling in the Joule-Thomson process

    , Article Journal of Natural Gas Science and Engineering ; Volume 89 , 2021 ; 18755100 (ISSN) Nabati Shoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, gas dehydration and natural gas liquid (NGL) recovery by the Joule-Thomson (JT) process, were investigated using the computational fluid dynamics (CFD) modeling approach. Droplet behavior inside the separator was analyzed by particle tracing and moisture diffusion methods. The modified separator reduced the water content of natural gas from 0.008 to 0.0029 kg/m3. In addition, the separation efficiency was increased by addition of internal components. One of the added internal components was an inlet deflector. Among different inlet deflectors, the reversed type one exhibited the highest separation efficiency. The separation efficiency improved from 6 to 10% in the original... 

    Probabilistic optimization of networked multi-carrier microgrids to enhance resilience leveraging demand response programs

    , Article Sustainability (Switzerland) ; Volume 13, Issue 11 , 2021 ; 20711050 (ISSN) Azimian, M ; Amir, V ; Habibifar, R ; Golmohamadi, H ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Microgrids have emerged as a practical solution to improve the power system resilience against unpredicted failures and power outages. Microgrids offer substantial benefits for customers through the local supply of domestic demands as well as reducing curtailment during possible disruptions. Furthermore, the interdependency of natural gas and power networks is a key factor in energy systems’ resilience during critical hours. This paper suggests a probabilistic optimization of networked multi-carrier microgrids (NMCMG), addressing the uncertainties associated with thermal and electrical demands, renewable power generation, and the electricity market. The approach aims to minimize the NMCMG... 

    Network-constrained optimal scheduling of multi-carrier residential energy systems: a chance-constrained approach

    , Article IEEE Access ; Volume 9 , 2021 , Pages 86369-86381 ; 21693536 (ISSN) Habibifar, R ; Ranjbar, H ; Shafie Khah, M ; Ehsan, M ; Catalão, J. P. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper presents a day-ahead scheduling approach for a multi-carrier residential energy system (MRES) including distributed energy resources (DERs). The main objective of the proposed scheduling approach is the minimization of the total costs of an MRES consisting of both electricity and gas energy carriers. The proposed model considers both electrical and natural gas distribution networks, DER technologies including renewable energy resources, energy storage systems (ESSs), and combined heat and power. The uncertainties pertinent to the demand and generated power of renewable resources are modeled using the chance-constrained approach. The proposed model is applied on the IEEE 33-bus... 

    Projection of passenger cars’ fuel demand and greenhouse gas emissions in Iran by 2050

    , Article Energy Conversion and Management: X ; Volume 12 , 2021 ; 25901745 (ISSN) Hassani, A ; Maleki, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Passenger cars (PCs) not only are a major contributor to greenhouse gas (GHG) emissions in Iran but also pose severe energy security challenges due to their dependence on gasoline. This study aimed to understand the future trends of the gasoline demand and GHG emissions from PCs in Iran and assess the effectiveness of mitigation policies. The data were collected from multiple sources and used to develop the survival rate function of PCs. The study used back-calculation to compensate for the short period of stock data availability. The use intensity of PCs was estimated based on the gasoline consumption statistics. Econometric models were developed to project the future PC stock and use... 

    A comparison of light-duty vehicles' high emitters fractions obtained from an emission remote sensing campaign and emission inspection program for policy recommendation

    , Article Environmental Pollution ; Volume 286 , 2021 ; 02697491 (ISSN) Hassani, A ; Safavi, S. R ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Urban transportation is one of the leading causes of air pollution in big cities. In-use emissions of vehicles are higher than the emission control certification levels. The current study uses a roadside remote sensing emission monitoring campaign to investigate (a) fraction of high emitters in the light-duty vehicle (LDV) fleet and their contributions to the total emissions, (b) emission inspection (I/M) programs' effectiveness, and (c) alternate fuel (natural gas) encouragement policy. LDVs consist of passenger or freight transport vehicles with four wheels equivalent to classes M1 and N1 of European union vehicle classifications. The motivation is to assess the current emission inspection... 

    Study of mixed-convection heat transfer from an impinging jet to a solid wall using a finite-element method - Application to cooktop modeling

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 46, Issue 4 , 2004 , Pages 387-397 ; 10407790 (ISSN) Karzar Jeddi, M ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    2004
    Abstract
    The mixed-convection flow from a hot vertical impinging jet on a colder horizontal disc has been studied. The geometry is analogous to a conventional burning gas cooktop. A numerical simulation of the system has been carried out using the finite-element method to study the dependence of fluid flow and heat transfer on the geometric, thermal, and fluid flow parameters. Results show that heat transfer efficiency versus several parameters such as inlet velocity magnitude and flue gas temperature has an optimum value, in which heat transfer efficiency is maximum. With thermal conductivity of the solid wall, velocity angle, and solid wall diameter heat transfer efficiency has increasing behavior.... 

    Transient modeling of dual fuel catalytic converter

    , Article Iranian Journal of Science and Technology, Transaction B: Technology ; Volume 27, Issue 2 , 2003 , Pages 291-298 ; 03601307 (ISSN) Sallamie, N ; Kazemeini, M ; Badakhshan, A ; Soltanieh, M ; Estiri, M ; Sharif University of Technology
    2003
    Abstract
    Exhaust gas emissions from mobile sources and its importance in urban pollution have currently attracted lots of interests towards studying on alternative fuel systems for road vehicles usage. One of the best replacements is the natural gas/diesel dual fuel, which offers an alternative to standard compression-ignition diesel engines. In the dual fuel system the primary fuel is natural gas, which may replace as much as 90% of the diesel fuel with a small amount of diesel fuel required ensuring effective ignition. Methane, the main constituent of natural gas, has high combustion efficiency. Dual fuel engines produce lower NOx emissions and fewer particulates. However, at moderate engine loads,... 

    A novel system for electricity and synthetic natural gas production from captured CO2: Techno-economic evaluation and multi-objective optimization

    , Article Journal of CO2 Utilization ; Volume 63 , 2022 ; 22129820 (ISSN) Beyrami, J ; Jalili, M ; Ziyaei, M ; Chitsaz, A ; Rosen, M. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    To mitigate global warming and fossil fuel shortages a novel oxy-fuel combustion power plant integrated with a power to gas system is proposed. A net-zero emission MATIANT cycle with inherent CO2 capture ability is selected as the power cycle also providing the CO2 and power demand of the power to gas system, which comprises a proton exchange membrane electrolyzer for hydrogen production and a Sabatier reactor for methanation. A techno-economic investigation, a multi-objective optimization, and a sensitivity analysis are carried out. A comprehensive economic method that covers all economic aspects is utilized, and a Sabatier reactor model which considers the possibility of the presence of... 

    Efficient back analysis of multiphysics processes of gas hydrate production through artificial intelligence

    , Article Fuel ; Volume 323 , 2022 ; 00162361 (ISSN) Zhou, M ; Shadabfar, M ; Huang, H ; Leung, Y. F ; Uchida, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Natural gas hydrate, a crystalline solid existing under high-pressure and low-temperature conditions, has been regarded as a potential alternative energy resource. It is globally widespread and occurs mainly inside the pores of deepwater sediments and sediments under permafrost area. Hydrate production via well depressurization is deemed well-suited to existing technology, in which the pore pressure is lowered, the natural gas hydrate is dissociated into water and gas, and the water and gas are produced from well. This method triggers multiphysics processes such as fluid flow, heat transfer, energy adsorption, chemical reaction and sediment deformation, all of which are dependent on the... 

    Probabilistic framework to quantify the seismic resilience of natural gas distribution networks

    , Article International Journal of Disaster Risk Reduction ; Volume 81 , 2022 ; 22124209 (ISSN) Baratian, A ; Kashani, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Natural Gas Distribution Networks (NGDNs) are complex infrastructure systems that play an essential role in ensuring the welfare and prosperity of many communities by serving their residential, commercial, industrial, and transportation sectors. Earthquakes can damage the critical components of NGDNs and disrupt their services. The disruption of NGDN services can lead to significant economic and social losses. These losses can be mitigated by adopting appropriate resilience enhancement measures. This study puts forward a probabilistic framework to quantify the seismic resilience of NGDNs. This framework comprises multiple interconnected probabilistic models that work in harmony to... 

    A novel strategy for process optimization of a natural gas liquid recovery unit by replacing Joule–Thomson valve with supersonic separator

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Nabati Shoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Nature Research  2022
    Abstract
    The natural gas liquid recovery is an important process in a gas plant to correct hydrocarbon dew point and earn profit. In this study, a natural gas liquid recovery unit operated based on the Joule–Thomson process was investigated and its performance was optimized. To improve the system performance, the plant configuration and intermediate pressure ratio were defined as the variables and maximization of the natural gas liquid recovery rate and maximization of exergy efficiency were defined as the objective functions. To improve the plant performance, the amount of natural gas liquid recovery rate should be increased. To achieve this goal, several scenarios for the intermediate pressure... 

    Heat and mass transfer analysis and optimization of freeze desalination utilizing cold energy of LNG leaving a power generation cycle

    , Article Desalination ; Volume 527 , 2022 ; 00119164 (ISSN) Salakhi, M ; Eghtesad, A ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Freeze desalination (FD) works upon the separation of impurities from pure water during ice crystals formation. The required cold source could be supplied by the cold energy of liquefied natural gas (LNG). In the current study, freeze desalination of seawater is explored by directly exploiting the cold energy of LNG within an appropriate range of temperature after producing work in a power generation cycle. A detailed discussion has been given on the inlet temperature of LNG to the FD unit for the first time. The direct utilization has the privilege of eliminating the addition of a secondary refrigerant and its refrigeration cycle to the FD process. A multi-objective optimization is...