Loading...
Search for: navier-stokes-equations
0.009 seconds
Total 222 records

    Modeling and parallel computation of the non-linear interaction of rigid bodies with incompressible multi-phase flow

    , Article Computers and Mathematics with Applications ; Volume 72, Issue 4 , 2016 , Pages 1055-1065 ; 08981221 (ISSN) Malvandi, A ; Ghasemi, A. M ; Nikbakhti, R ; Ghasemi, A. R ; Hedayati, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A computational tool is developed to capture the interaction of solid object with two-phase flow. The full two-dimensional Navier–Stokes equations are solved on a regular structured grid to resolve the flow field. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. A two-step projection method along with Multi-Processing (OpenMP) is employed to solve the flow equations. The computational tool is verified based on numerical and experimental data with three scenarios: a cylinder falling into a rectangular domain due to gravity, transient vertical oscillation of a cylinder by releasing above its equilibrium position,... 

    Numerical investigation of the forward and backward travelling waves through an undulating propulsor: performance and wake pattern

    , Article Ships and Offshore Structures ; Volume 11, Issue 5 , 2016 , Pages 517-539 ; 17445302 (ISSN) Ebrahimi, M ; Abbaspour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Recently, the mechanisms of natural undulatory locomotion of aquatic animal swimming have become one of the most significant issues for the researchers, swimmers and engineers. This study aims to elucidate and compare the propulsive vortical signature and performance of backward (negative undulation) and forward (positive undulation) travelling waves through a typical fishlike propulsor by a systematic numerical study. The numerical approach uses a pressure-based finite volume method solver to solve Navier–Stokes equations in an arbitrary Lagrangian–Eulerian framework domain containing a two-dimensional NACA 0012 foil moving with prescribed kinematics. Some of the important findings are: (1)... 

    Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations

    , Article International Journal of Environmental Science and Technology ; Volume 13, Issue 6 , 2016 , Pages 1525-1540 ; 17351472 (ISSN) Abbaspour, M ; Radmanesh, A. R ; Soltani, M. R ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies 
    Abstract
    The first notable megawatt class wind turbine, which was the pioneer of improvement in the blade performance in large wind turbines, appeared in Vermont. Nowadays, modern wind turbines are using blades with multi-airfoils at different sections. In this study, in order to indicate the best airfoil profile for the optimum performance in different sections of a blade, five popular airfoils, including S8xx, FFA and AH series, were studied. On the large-scale profile, shear stress transport K–ω model was applied for the simulation of horizontal axis wind turbines for different wind speeds. The aerodynamic simulation was accomplished using computational fluid dynamic method, which in turn is based... 

    Free vibrations of moderately thick truncated conical shells filled with quiescent fluid

    , Article Journal of Fluids and Structures ; Volume 63 , 2016 , Pages 280-301 ; 08899746 (ISSN) Rahmanian, M ; Dehghani Firouz Abadi, R ; Cigeroglu, E ; Sharif University of Technology
    Academic Press  2016
    Abstract
    A novel reduced order formulation is proposed for the vibration analysis of conical shells containing stationary fluid. Hamiltonian approach is followed to obtain the governing equations of motion for the structure. Utilizing the Navier-Stokes equations and simplifying for irrotational, compressible and inviscid assumptions, the final fluid equation is obtained. A general solution based on the Galerkin method is proposed for the conical shell in vacuum. Several boundary conditions are investigated to show the capability of the proposed solution. A novel reduced order formulation based on the finite element method is developed for solution of the fluid equation. Static condensation technique... 

    Analysis of non-newtonian fluids in microchannels with different wall materials

    , Article ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels ; 2009 , Pages 697-703 ; 9780791843499 (ISBN) Darbandi, M ; Behshad Shafii, M ; Safari Mohsenabad, S ; Sharif University of Technology
    Abstract
    The behavior of non-Newtonian fluids is considered as an important subject in micro scale and microfluidic flow researches. Because of the complexity and cost in the numerical works and the experimental set-ups in some instances, the analytical approach can be taken into account as a robust alternative tool to solve the non-Newtonian microfluidic flows in some special cases benefiting from a few simplified assumptions. In this work, we analyze the flow of two non-Newtonian fluids including the power-law and grade-fluid models in microchannels. For the grade-fluid, the stress tensors are defined considering the Rivlin-Ericksen tensor definitions. To avoid the complexities in the entrance... 

    Mass flow rate scaling of the continuum-based equations using information preservation method

    , Article 41st AIAA Thermophysics Conference2009, Article number 2009-3746 ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Vakilipour, S ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Kinetic theory based numerical scheme such as direct simulation Monte Carlo (DSMC) and information preservation (IP) schemes properly solve micro-nano flow problems in transition and free molecular regimes. However, the high computational cost of these methods encourages the researchers toward extending the applicability of the continuumbased equations beyond the slip flow regime. In addition to correct velocity profile, the continuum-based equations should predict accurate mass flow rate magnitude. The secondorder velocity slip models derived from the kinetic theory provide accurate velocity profiles up to Kn=0.5; however, they yield erroneous mass flow rate magnitudes because the basic... 

    The level set modeling of droplet dynamic in fluid-fluid interaction

    , Article 39th AIAA Fluid Dynamics Conference, 22 June 2009 through 25 June 2009, San Antonio, TX ; 2009 ; 9781563479755 (ISBN) Darbandi, M ; Mazaheri, I ; Dehkordi, A. M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, we present a level set method to simulate steady and unsteady mass transfer from a single droplet moving in a second phase fluid under buoyant force. We initially use level set to determine the interface between the two phases, where the shape of drop forms. Next, we extend this method to solve a unique mass transfer equation for the entire solution domain without considering the discontinuity appeared at the interface. We use a finite element method incorporated with the characteristic-based split (CBS) algorithm to implement axi-symmetric mass transfer equations on a stationary Eulerian grid. Of course, the convection-diffusion modeling of mass transfer is different from the... 

    Solving Preconditioned Euler/Navier-Stokes Equations for Numerical Simulation of Cavitating Flows Using a Barotropic Model

    , M.Sc. Thesis Sharif University of Technology Ezzatneshan, Eslam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    Cavitation can occur in many fluid systems such as pumps, nozzles, hydrofoils and submarine vehicles and therefore, numerical modeling of this phenomenon has a significant importance. In this study, the numerical simulation of the cavitating flows through the Euler/Navier-Stokes equations employing the interface capturing method associated with a barotropic state law is performed. The system of governing equations is discretized using a cell-centered finite-volume algorithm and the fluxes are evaluated using a central-difference scheme. To account for density jumps across the cavity interface, the numerical dissipation terms with suitable density and pressure sensors are used. Since... 

    Developing a Hybrid Molecular-Continuum Algorithm to Simulate Gas Flow in Micro-Nano Propulsion Systems

    , Ph.D. Dissertation Sharif University of Technology Roohi Golkhatmi, Ehsan (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    With the rapid development in the application of nano-micro systems in space propulsion systems, it is necessary to obtain accurate analysis of flow field in these devices. New generation of space missions are usually performed by using a network of small-scale satellites. The mission control of such small-scale satellites requires specialized propulsion systems than produce small propulsive forces of about 1 micro-Newton. The main purpose of the current PhD thesis is analysing the flow field in different nano/micro propulsion systems by using a hybrid Navier-Stokes (NS)-direct simulation Monte Carlo (DSMC) method. Nano/micro propulsion systems experience different rarefaction regimes from... 

    Investigation of obstacle effect to improve conjugate heat transfer in backward facing step channel using fast simulation of incompressible flow

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2017 , Pages 1-16 ; 09477411 (ISSN) Nouri Borujerdi, A ; Moazezi, A ; Sharif University of Technology
    Abstract
    The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In... 

    Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium

    , Article Physics of Fluids ; Volume 29, Issue 6 , 2017 ; 10706631 (ISSN) Rokhforouz, M. R ; Akhlaghi Amiri, A ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. Thiswork presents the results of a newpore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with... 

    Numerical simulations of turbulent flow around side-by-side circular piles with different spacing ratios

    , Article International Journal of River Basin Management ; Volume 15, Issue 2 , 2017 , Pages 227-238 ; 15715124 (ISSN) Beheshti, A. A ; Ataie Ashtiani, B ; Dashtpeyma, H ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Numerical simulations of the turbulent flow around single and side-by-side piles at different spacing ratios (centre-to-centre distance to the pile diameter) with flow Reynolds number of 105 on the fixed flat-bed are presented. The calculations are performed using the computational fluid dynamics model, FLOW-3D, which solves the Navier–Stokes equations in three dimensions with a finite-volume method. The numerical results of time-averaged flow patterns around single and side-by-side piles are validated using the available experimental measurements. At the downstream of the single pile, dimensionless vortex shedding frequency (Strouhal number) is estimated as 0.22. The maximum values of bed... 

    Numerical simulation of the effect of visitor's movement on bacteria-carrying particles distribution in hospital isolation room

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1160-1170 ; 10263098 (ISSN) Eslami, J ; Abbassi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The aim of this paper is to simulate numerically the airflow induced by a walking visitor and its effects on the contaminant transport and ventilation system effectiveness. To this end, the following models will be used in this study: the Lagrangian Discrete Random Walk (DRW) model to trace the motion of BCPs, the dynamic mesh method to simulate the visitor movement, and the Reynolds Averaged Navier-Stokes (RANS) model to solve the airflow. The validation results of the numerical method are in full agreement with the available experimental data in the literature. The findings of the present study indicate that the visitor's movement has remarkable effect on the basic airflow, and the... 

    Stability analysis of whirling composite shells partially filled with two liquid phases

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 5 , 2017 , Pages 2117-2127 ; 1738494X (ISSN) Sahebnasagh, M ; Nikkhah Bahrami, M ; Firouz Abadi, R ; Sharif University of Technology
    Abstract
    In this paper, the stability of whirling composite cylindrical shells partially filled with two liquid phases is studied. Using the first-order shear shell theory, the structural dynamics of the shell is modeled and based on the Navier-Stokes equations for ideal liquid, a 2D model is developed for liquid motion at each section of the cylinder. In steady state condition, liquids are supposed to locate according to mass density. In this study, the thick shells are investigated. Using boundary conditions between liquids, the model of coupled fluid-structure system is obtained. This coupled fluid-structure model is employed to determine the critical speed of the system. The effects of the main... 

    Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators

    , Article Energy Conversion and Management ; Volume 146 , 2017 , Pages 96-106 ; 01968904 (ISSN) Ebrahimi, A ; Movahhedi, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study numerically investigates the feasibility of using multiple dielectric barrier discharge (multi-DBD) plasma actuators as a novel approach for active flow control over a large horizontal axis wind turbine rotor. The National Renewable Energy Laboratory 5 MW offshore wind turbine is used as the baseline case. This turbine uses pitch control system to adjust the generated power above its rated wind speeds, but at lower speeds, this system remains inactive. In this paper, the operational condition speed is considered lower than the rated wind speed. The mathematical electro-static model is implemented to simulate the effects of plasma actuator on the external flow and the... 

    Reynolds-averaged navier-stokes simulation of hydrofoil effects on hydrodynamic coefficients of a catamaran in forced oscillation

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 231, Issue 2 , 2017 , Pages 364-383 ; 14750902 (ISSN) Najafi, A ; Seif, M. S ; Sharif University of Technology
    Abstract
    Determination of high-speed crafts' hydrodynamic coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Also, it can be useful and effective in controlling the vessel instabilities. The main purpose of this study is to determine the coefficients of longitudinal motions of a planing catamaran with and without a hydrofoil using Reynolds-averaged Navier-Stokes method to evaluate the foil effects on them. Determination of hydrodynamic coefficients by experimental approach is costly and requires meticulous laboratory equipment; therefore, utilizing the numerical methods and developing a virtual laboratory seem highly... 

    Numerical simulation of mixed compression intake Buzz

    , Article ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017, 3 November 2017 through 9 November 2017 ; Volume 1 , 2017 ; 9780791858349 (ISBN) Soltani, M. R ; Abedi, M ; Askari, R ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    Numerical analysis has been conducted to simulate and capture Buzz phenomenon in a supersonic mixed compression air intake. Buzz is an unsteady self-sustained phenomenon occurred in supersonic intakes, especially when operating its subcritical condition, during which the system of compression and shock waves oscillate and move upstream and downstream along the intake. An axisymmetric and unsteady numerical simulation was used to solve Navier-Stokes equations in combination with URANS SST k-ω turbulence model The simulations were performed at M=2.0 and at a specific subcritical point of the intake operation where buzz was detected experimentally. Results are compared with experimental... 

    Adjoint-based design optimization of s-shaped intake geometry

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 3 November 2017 through 9 November 2017 ; Volume 1 , 2017 ; 9780791858349 (ISBN) Askari, R ; Shoureshi, P ; Soltani, M. R ; Khajeh Fard, A ; ASME ; Sharif University of Technology
    Abstract
    The S-shaped air intakes are very common shapes due to their ease in the engine-body integration or Radar Cross Section, RCS, specifications especially for fighter aircrafts. The numerical shape optimization of an S-shaped air intake using adjoint method is conducted. The flow of a specified air intake that uses S-duct M2129 is simulated using three dimensional (3D) numerical solution of Reynolds-Averaged Navier-Stokes equation along with k-ω SST turbulence model. The main purpose of this optimization scheme is to maximize the total pressure recovery (TPR). Further, the scheme is developed in such a way that would be applicable in industry thru satisfying specified constraint requirements.... 

    A truly incompressible smoothed particle hydrodynamics based on artificial compressibility method

    , Article Computer Physics Communications ; Volume 210s , 2017 , Pages 10-28 ; 00104655 (ISSN) Rouzbahani, F ; Hejranfar, K ; Sharif University of Technology
    Abstract
    In the present study, a truly incompressible smoothed particle hydrodynamics based on the artificial compressibility method for simulating steady and unsteady incompressible flows is proposed and assessed. The incompressible Navier–Stokes equations in the primitive variables formulation using the artificial compressibility method proposed by Chorin in the Eulerian reference frame are written in a Lagrangian reference frame to provide an appropriate incompressible SPH algorithm. The proposed SPH formulation implemented here is based on an implicit dual-time stepping scheme to be capable of time-accurate analysis of unsteady flows. The advantage of the Artificial Compressibility-based... 

    Parallelized numerical modeling of the interaction of a solid object with immiscible incompressible two-phase fluid flow

    , Article Engineering Computations (Swansea, Wales) ; Volume 34, Issue 3 , 2017 , Pages 709-724 ; 02644401 (ISSN) Ghasemi, A ; Nikbakhti, R ; Ghasemi, A ; Hedayati, F ; Malvandi, A ; Sharif University of Technology
    Abstract
    Purpose - A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost. Design/methodology/approach - The full two-dimensional Navier-Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full...