Loading...
Search for: nickel
0.008 seconds
Total 498 records

    Microstructural evolution mechanism during brazing of Hastelloy X superalloy using Ni–Si–B filler metal

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 5 , 2018 , Pages 441-448 ; 13621718 (ISSN) Ghasemi, A ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    The paper aims at understanding solidification phenomena and solid state precipitations during diffusion brazing of Hastelloy X nickel base superalloy using a ternary Ni–4.5Si–3.2 B (in wt-%) filler metal. The joint is featured by the formation of Ni-rich solid solution in an isothermal solidification zone, borides/silicide formation during eutectic-type solidification in an athermal solidification zone, on-cooling precipitation of fine nickel silicides in the joint centerline, in situ precipitation of Mo–Cr-rich borides in the diffusion affected zone and grain growth in the heat affected zone. The implication of the phase transformations on the joint properties is discussed. It is shown... 

    Modeling of self-controlling hyperthermia based on nickel alloy ferrofluids: Proposition of new nanoparticles

    , Article Journal of Magnetism and Magnetic Materials ; Volume 335 , 2013 , Pages 59-63 ; 03048853 (ISSN) Delavari H. H ; Madaah Hosseini, H. R ; Wolff, M ; Sharif University of Technology
    2013
    Abstract
    In order to provide sufficient heat without overheating healthy tissue in magnetic fluid hyperthermia (MFH), a careful design of the magnetic properties of nanoparticles is essential. We perform a systematic calculation of magnetic properties of Ni-alloy nanoparticles. Stoner-Wohlfarth model based theories (SWMBTs) are considered and the linear response theory (LRT) is used to extract the hysteresis loop of nickel alloy nanoparticles in alternating magnetic fields. It is demonstrated that in the safe range of magnetic field intensity and frequency the LRT cannot be used for the calculation of the area in the hysteresis for magnetic fields relevant for hyperthermia. The best composition and... 

    Transient liquid phase bonding of wrought IN718 nickel based superalloy using standard heat treatment cycles: Microstructure and mechanical properties

    , Article Materials and Design ; Volume 50 , 2013 , Pages 694-701 ; 02641275 (ISSN) Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    Transient liquid phase (TLP) diffusion bonding is a preferred joining/repairing technique for nickel based superalloy. In this research, TLP bonding process carried out according to the standard heat treatment cycles for wrought IN718 base material in order to permit the combining of these two thermal operations. The results showed that the standard solution treatments at 1000 and 1050. °C for 60. min can result in completion of isothermal solidification in IN718/Ni-Cr-Fe-Si-B/IN718 system producing an entirely intermetallic free joint centerline. Two distinct microstructural zones were formed in the bonding affected zone: isothermal solidification zone (ISZ) which consists of single phase... 

    Nickel ferrite nanoparticles: An efficient and reusable nanocatalyst for a neat, one-pot and four-component synthesis of pyrroles

    , Article RSC Advances ; Volume 5, Issue 23 , Feb , 2015 , Pages 18092-18096 ; 20462069 (ISSN) Matloubi Moghaddam, F ; Koushki Foroushani, B ; Rezvani, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this study nickel ferrite magnetic nanoparticles were applied as an efficient and reusable catalyst in the four-component synthesis of substituted pyrroles under neat conditions. The reaction was conducted using various amounts of catalyst at different temperatures and finally, application of 5 mol% of catalyst at 100 °C was determined as the optimum reaction condition. Results showed that nickel ferrite nanoparticles could catalyze the reaction at relatively short times (3-4 h) with high to excellent yields (70-96%). The catalyst could be recovered easily using an external magnetic field and reused nine times without any significant activity lost  

    In-situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new substrate for electrodeposition of flower like nickel hydroxide: Application as a new high-performance supercapacitor

    , Article Electrochimica Acta ; Volume 206 , 2016 , Pages 317-327 ; 00134686 (ISSN) Shahrokhian, S ; Mohammadi, R ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Demand for more efficient energy storage devices stimulates efforts to search and develop new materials and composites with promising properties. In this regard, composite materials, including carbonaceous materials and metal oxides have attracted a great attention due to better electrochemical performance as compared to their single material analogues. For the first time, herein, we report a new and simple procedure for preparing porous highly oriented pyrolytic graphite/nickel hydroxide composite (P-HOPG/Ni(OH)2) via a fast and simple two-step electrochemical method including potentiostatic routes. In the first step, a low anodic potential (2 V) was applied to pristine HOPG in 0.5 M H2SO4... 

    Synthesis of highly dispersed nanosized NiO/MgO-Al2O3 catalyst for the production of synthetic natural gas with enhanced activity and resistance to coke formation

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 38 , 2018 , Pages 12700-12714 ; 08885885 (ISSN) Ebadi, A ; Tourani, S ; Khorasheh, F ; Sharif University of Technology
    Abstract
    Nickel nanoparticles supported on MgO-Al2O3 and Al2O3 were synthesized by an impregnation method using dinitrobisethylenediamine nickel and nickel nitrate hexahydrate as precursors and were used as catalysts for CO methanation. Different MgO contents (1.5-11.25 wt %) were employed for the preparation of supports, and NiO loadings were in the range of 10-40 wt %. The optimum catalyst prepared from proper amounts of MgO (∼2 wt %) and NiO loading (20 wt %) with [Ni(en)2(H2O)2](NO3)2 as precursor and a mesoporous support with a wide range of mesopores resulted in highly dispersed nickel nanoparticles that exhibited moderate metal-support interactions, lower acidic surface sites, and enhanced... 

    Role of base-metal composition in isothermal solidification during diffusion brazing of nickel-based superalloys

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 1 , 2018 , Pages 13-18 ; 13621718 (ISSN) Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    The key feature of diffusion brazing, also referred to as transient liquid phase bonding, is isothermal solidification which precludes the formation of intermetallic in the joint centreline. Analysing the available data published in the literature showed that the composition of the nickel-based superalloys plays a strong role in determining the required time for obtaining intermetallic-free joint during diffusion brazing. This effect is not predictable by the standard conventional models. It is proposed that increasing the boride-forming elements in the base superalloy which promotes in situ boride precipitation at the diffusion-affected zone can accelerate the diffusion flux of the boron... 

    Intermetallic phase formation during brazing of a nickel alloy using a Ni–Cr–Si–Fe–B quinary filler alloy

    , Article Science and Technology of Welding and Joining ; Volume 24, Issue 4 , 2019 , Pages 342-351 ; 13621718 (ISSN) Ghasemi, A ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Fundamental understanding of the intermetallic phase formation is the key for enhancing the robustness and reliability of the brazed joints. The paper addresses the phase transformations during brazing of the Hastelloy X nickel-base superalloy using the quinary Ni–13Cr–4.5Si–4.2Fe–2.8B (wt-%) braze alloy. The mechanisms of intermetallic formation via solidification and solid-state precipitation are discussed. The athermal solidification zone (ASZ) is featured by the formation of brittle and hard borides and boro-silicides that are formed via eutectic reactions. However, in contrast to other commercial B-bearing Ni-based filler alloys, it was identified that the presence of a high-volume... 

    Microstructure and mechanical properties of dissimilar nickel-based superalloys resistance spot welds

    , Article Materials Science and Engineering A ; Volume 773 , 2020 Bemani, M ; Pouranvari, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper addresses the factors affecting the mechanical properties of dissimilar resistance spot welds between Nimonic 263 and Hastelloy X nickel-based superalloys. The fusion zone (FZ) of the dissimilar weld displayed higher hardness values compared to the base metals which can be attributed to (i) the formation of Mo-rich carbide in the interdendritic zone due to positive segregation behavior of Mo and C during non-equilibrium solidification of the weld, (ii) the enhanced solid solution strengthening due to mixing of the base metals, and (iii) the formation of ultra-fine dendritic structure in the FZ due to ultra-fast cooling rate of the resistance spot welding. Formation of... 

    Resistance spot welding of Nimonic 263 nickel-based superalloy: microstructure and mechanical properties

    , Article Science and Technology of Welding and Joining ; Volume 25, Issue 1 , 2020 , Pages 28-36 Bemani, M ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This paper addresses the metallurgical and mechanical response of Nimonic 263 nickel-based superalloy to resistance spot welding. Solidification structure of the fusion zone is described in terms of dendrite arm spacing, segregation behaviour and secondary carbide formation in the inter-dendritic area. The heat affected zone is featured by negligible grain growth and constitutional liquation of primary (Ti, Mo)C carbide present in the initial microstructure of the base metal. Mechanical behaviour of the welds was characterised by interfacial to pullout failure mode transition, peak load and energy absorption of the joints during the tensile-shear loading. The fusion zone size and the... 

    Electrochemical deposition of flower-like nickel nanostructures on well-defined n-si(111):h

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 177-182 ; 1728-144X (ISSN) Torabi, M ; Khalifehzadeh, R ; Arami, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    In this paper the electrodeposition of nickel on n-Si(111):H substrate, in the presence of sulphuric acid, was studied. Cyclic voltammetry has been used to characterize the electrochemical behavior of the system. The nickel deposits had a flower-like morphology with the spherical nanostructure nucleus, distributed uniformly on the surfaces of the prepared n-Si(111) substrate  

    Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery

    , Article Journal of Electroanalytical Chemistry ; Volume 894 , 2021 ; 15726657 (ISSN) Rastgoo Deylami, M ; Javanbakht, M ; Omidvar, H ; Hooshyari, K ; Salarizadeh, P ; Askari, M. B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The anode materials are one of the critical components in rechargeable lithium ion batteries (LIBs). The monoclinic tungsten trioxide (mWO3) is introduced as interesting anode electrode for LIBs due to its good structure for intercalation and de-intercalation of lithium ions, high abundance and various oxidation state of tungsten and etc. In this study, we prepare and investigate the effect of various amounts of nickel dopant on characteristics and electrochemical properties of the mWO3 as the anode electrode in a rechargeable LIB. The experimental investigations confirm that the number of nickel atoms has a remarkable effect on controlling spherical particle diameter, crystallite size, and... 

    Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode

    , Article Journal of Solid State Electrochemistry ; Volume 13, Issue 8 , 2009 , Pages 1171-1179 ; 14328488 (ISSN) Jafarian, M ; Forouzandeh, F ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2009
    Abstract
    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox processes and electro-catalytic activities towards the oxidation of glucose in alkaline solutions. The methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. It is also observed that the overpotential for O 2 evolution increases for NiCu alloy modified electrode. In CV studies, NiCu alloy modified electrode yields significantly higher... 

    Electroplating Nano Crystalline Nickel for Reduction of Corrosion Rate

    , M.Sc. Thesis Sharif University of Technology Hajinejad, Davood (Author) ; Baghalha, Morteza (Supervisor)
    Abstract
    Polycrystalline materials are solids that are composed of many crystallites of varying size and orientation called “Grain”. As the grain size reduces to the values below 100nm, the overall material properties are remarkably changed, and thus the resulting nanocrystalline materials have provided much better engineering properties at the same chemical composition compared to the microcrystalline. The main objective of the present study is to synthesize a nanocrystalline (22nm-25nm) coating based on Nickel over the yellow-brass plates. To do this, an electroplating technique in a modified Watts bath is employed in which the current density and stirring speed varied between 3 to 9.5 Ampere per... 

    Preparation of Nanocomposites from Carbon Nanostructures and Transtion Metal Oxides and their use in Preparation of Hybrid Electrochemical Capacitors

    , M.Sc. Thesis Sharif University of Technology Rahimi, Sajad (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, we report a new and simple procedure for preparing reduced graphene oxide /nickel, cobalt hydroxide composite (Ni,Co-OH/rGO/NF via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of Cetyl trimethyl ammonium bromide )CTAB( as a cationic surfactant. In the first step, a piece of nickel foam (NF) is sonicated in a suspension of graphene oxide (GO, 6 mg/L) after dried in an oven, reduced by electrochemically. After that, Ni, Co LDH were co-deposited on the surface of rGO/NF. The resulting modified electrode afforded extremely high specific capacitance of 2133.3 F/g at a current density of 4 A g-1. FE-SEM results showed that... 

    Diffusion induced isothermal solidification during transient liquid phase bonding of cast IN718 superalloy

    , Article Canadian Metallurgical Quarterly ; Vol. 53, issue. 1 , 2014 , p. 38-46 Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In transient liquid phase (TLP) bonding for commercial applications, one of the important key parameters is the holding time required for complete isothermal solidification tIS, which is a prerequisite for obtaining a proper bond microstructure. The objective of the study is to analyse the isothermal solidification kinetics during TLP bonding of cast IN718 nickel based superalloy. Experiments for TLP bonding were carried out using a Ni-7Cr-4.5Si-3Fe-3.2B (wt-%) amorphous interlayer at several bonding temperatures (1273-1373 K). The time required to obtain TLP joints free from centreline eutectic microconstituents was experimentally determined. Considering the solidification behaviour of... 

    Phase transformations during diffusion brazing of IN718/Ni-Cr-B/IN718

    , Article Materials Science and Technology (United Kingdom) ; Volume 29, Issue 8 , 2013 , Pages 980-984 ; 02670836 (ISSN) Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    2013
    Abstract
    The production of robust joints after diffusion brazing necessitates the advanced understanding of phase transformations during the bonding process. This paper aims to investigate the solidification and the solid state precipitation during diffusion brazing of wrought IN718 nickel base superalloy using Ni-15Cr-4B (wt-%) filler alloy. It was found that intermetallics containing eutectic type microconstituents were formed in the joint centreline by solidification which is controlled by segregation behaviour of B and its low solubility in Ni rich solid solution. In addition, extensive Cr-Mo-Nb rich precipitates were formed in the substrate region by solid state precipitation induced by B... 

    TLP bonding of cast IN718 nickel based superalloy: Process-microstructure-strength characteristics

    , Article Materials Science and Engineering A ; Volume 568 , 2013 , Pages 76-82 ; 09215093 (ISSN) Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    2013
    Abstract
    This paper aims at addressing the microstructure-strength characteristics relationship during transient liquid phase (TLP) bonding of cast IN718 nickel based superalloy using Ni-7. Cr-4.5. Si-3. Fe-3.2. B (wt%) amorphous interlayer. The progress of the isothermal solidification at different temperatures for different times is analyzed using a Larson-Miller parameter (LMP). It was found that there is direct relationship between isothermal solidification zone (ISZ) size and LMP. Results showed that in situation where isothermal solidification has not been completed, the ratio of athermal solidification zone (ASZ) size to the width of the total solidified zone is the controlling factor for... 

    A study on the mechanism of electrodeposition of Ni/SiC composite coatings using impedance technique

    , Article ECS Transactions ; Volume 41, Issue 44 , 2012 , Pages 47-57 ; 19385862 (ISSN) ; 9781607683452 (ISBN) Sohrabi, A ; Dolati, A ; Electrodeposition; Sensor ; Sharif University of Technology
    2012
    Abstract
    Ni/SiC nanocomposite coatings were electrodeposited using Watts type bath and different SiC particle size. The electrodeposition behavior of Ni/SiC nanoelectrocomposites was studied using electrochemical techniques such as impedance spectroscopy (EIS) and voltammetry. In this study it was shown that SiC particles modify the EIS diagram and voltammograms as well as surface morphology of electrodeposited layers. Experimental results showed that SiC particles not only affect the formation of intermediate species and decrease charge transfer resistance but also increase the nucleation sites for nickel electrodeposition and thus affect the microstructure of electrodeposited Ni/SiC nanocomposites.... 

    Laser-assisted friction stir processing of IN738LC nickel-based superalloy:stir processing of IN738LC nickel-based superalloy: Stir zone characteristics.tir zone characteristics

    , Article Science and Technology of Welding and Joining ; Volume 21, Issue 5 , 2016 , Pages 374-380 ; 13621718 (ISSN) Mousavizade, S. M ; Pouranvari, M ; Ghaini, F. M ; Fujii, H ; Chung, Y. D ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    Friction stir processing (FSP) of high softening-temperature materials such as nickel-based superalloys is considered to be difficult. Laser heating of a localised area ahead of the FSP tool was used to provide sufficient plasticity during the FSP of IN738LC nickel-based superalloy. The stir zone (SZ) microstructure of the friction stir processed and laser-assisted friction stir processed were characterised. Laser-assisted friction stir processing (LAFSP) produced a defect-free pass, but FSP resulted in generation of a discontinuity in the SZ. Both lower volume fraction of partially dissolved γ′ precipitates and coarser grain structure of SZ in LAFSP led to more ductility of the SZ material...