Loading...
Search for: nonlinear-analysis
0.015 seconds
Total 192 records

    Nonlinear vibration and buckling analysis of beams using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 463-469 ; 9780791844472 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational and buckling analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differential equation. Homotopy and modified Lindstedt-Poincare (HPM) are applied to find analytic expressions for nonlinear natural frequencies and critical axial loads of the beams. Effects of design parameters such as axial load and slenderness ratio are investigated. The analytic expressions... 

    Importance of the flexural and membrane stiffnesses in large deflection analysis of floating roofs

    , Article Applied Mathematical Modelling ; Volume 34, Issue 9 , 2010 , Pages 2426-2436 ; 0307904X (ISSN) Shabani, R ; Tariverdilo, S ; Salarieh, H ; Rezazadeh, G ; Sharif University of Technology
    2010
    Abstract
    Applying integrated variational principles on fluid and deck plate to the large deflection analysis of floating roofs, this paper investigates the significance of the flexural and membrane components in the formulations of the deck plate. Integrated variational principles facilitate the treatment of the compatibility of deformation between floating roof and supporting liquid. Analysis results show that different assumptions about deck plate formulation commonly used in the literature, results in considerably different deflection and stress patterns on the floating roof. The results show that modeling of the deck plate as a flexural element rather than the membrane, by eliminating the need... 

    Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 5, Issue 1 , 2010 , Pages 1-6 ; 15551415 (ISSN) Pirbodaghi, T ; Hoseini, S ; Sharif University of Technology
    2010
    Abstract
    In this study, the nonlinear free vibration of conservative two degrees of freedom systems is analyzed using the homotopy analysis method (HAM). The mathematical model of such systems is described by two second-order coupled differential equations with cubic nonlinearities. First, novel approximate analytical solutions for displacements and frequencies are established using HAM. Then, the homotopy Padé technique is applied to accelerate the convergence rate of the solutions. Comparison between the obtained results and those available in the literature shows that the first-order approximation of homotopy Padé technique leads to accurate solutions with a maximum relative error less than 0.068... 

    Effect of flexural and membrane stiffnesses on the analysis of floating roofs

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 23, Issue 1 , 2010 , Pages 57-64 ; 17281431 (ISSN) Tariverdilo, S ; Shabani, R ; Salarieh, H ; Sharif University of Technology
    Materials and Energy Research Center 
    Abstract
    With the aim of extending the use of integrated variational principles on fluid and deck plate to the large deflection analysis of floating roofs, this paper investigates the significance of the flexural and membrane components in the formulations of the deck plate. Applying integrated variational principles on deck plate and fluid facilitate the treatment of the compatibility of deformation between floating roof and supporting liquid. Analysis results showed that different assumptions about deck plate formulation were commonly used in the literature which resulted in considerably different deflection and stress patterns on the floating roof. The results showed that modeling of the deck... 

    Effects of concurrent earthquake and temperature loadings on cable-stayed bridges

    , Article International Journal of Structural Stability and Dynamics ; Volume 16, Issue 6 , 2016 ; 02194554 (ISSN) Maleki, S ; Maghsoudi Barmi, A ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd 
    Abstract
    This paper discusses the necessity of considering the concurrent effects of uniform temperature and earthquake loadings in the design of cable-stayed bridges. This load combination is not foreseen in current design standards such as AASHTO and Eurocode. Three-dimensional finite element models of cable-stayed bridges are employed for nonlinear time history analyses. A load combination is proposed that adds uniform temperature loading to the existing extreme event load combination. The proposed combination is compared with existing extreme event load combination and the changes in forces and displacements are noted. A parametric study is then conducted by varying a number of properties of the... 

    Nonlinear Dimensionality Reduction via Path-Based Isometric Mapping

    , Article IEEE Transactions on Pattern Analysis and Machine Intelligence ; Volume 38, Issue 7 , 2016 , Pages 1452-1464 ; 01628828 (ISSN) Najafi, A ; Joudaki, A ; Fatemizadeh, E ; Sharif University of Technology
    IEEE Computer Society 
    Abstract
    Nonlinear dimensionality reduction methods have demonstrated top-notch performance in many pattern recognition and image classification tasks. Despite their popularity, they suffer from highly expensive time and memory requirements, which render them inapplicable to large-scale datasets. To leverage such cases we propose a new method called "Path-Based Isomap". Similar to Isomap, we exploit geodesic paths to find the low-dimensional embedding. However, instead of preserving pairwise geodesic distances, the low-dimensional embedding is computed via a path-mapping algorithm. Due to the much fewer number of paths compared to number of data points, a significant improvement in time and memory... 

    Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits

    , Article Microsystem Technologies ; 2016 , Pages 1-18 ; 09467076 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Application of piezoelectric materials in vibration energy harvesters is expanding rapidly, especially in MEMS-based devices, due to their uncomplicated fabrication processes and reasonable power generation potential. In addition to standard power extraction methods, nonlinear switched techniques with capability of generated power enhancement, are previously developed and extensively applied in energy harvesting using piezoelectric materials. In this article, vibratory behavior of bimorph resonant harvesters coupled to nonlinear circuits of energy harvesting including standard and switched techniques is investigated. An analytical approach employing some perturbation technique, is utilized... 

    The modified dynamic-based pushover analysis of steel moment resisting frames

    , Article Structural Design of Tall and Special Buildings ; Volume 26, Issue 12 , 2017 ; 15417794 (ISSN) Mirjalili, M. R ; Rahimzadeh Rofooei, F ; Sharif University of Technology
    Abstract
    A modified dynamic-based pushover (MDP) analysis is proposed to properly consider the effects of higher modes and the nonlinear behavior of the structural systems. For this purpose, first, a dynamic-based story force distribution (DSFD) load pattern is constructed using a linear dynamic analysis, either time history (THA) or response spectrum (RSA). Performing an initial pushover analysis with the DSFD load pattern, a nonlinearity modification factor (NMF) is calculated to modify the DSFD load pattern. The envelope of the peak responses of the structure obtained from 2 pushover analyses with the modified DSFD load pattern as well as the code suggested first mode load pattern are considered... 

    Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits

    , Article Microsystem Technologies ; Volume 23, Issue 7 , 2017 , Pages 2403-2420 ; 09467076 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Application of piezoelectric materials in vibration energy harvesters is expanding rapidly, especially in MEMS-based devices, due to their uncomplicated fabrication processes and reasonable power generation potential. In addition to standard power extraction methods, nonlinear switched techniques with capability of generated power enhancement, are previously developed and extensively applied in energy harvesting using piezoelectric materials. In this article, vibratory behavior of bimorph resonant harvesters coupled to nonlinear circuits of energy harvesting including standard and switched techniques is investigated. An analytical approach employing some perturbation technique, is utilized... 

    Standard and boundary layer perturbation approaches to predict nonlinear axisymmetric behavior of cylindrical shells

    , Article Composite Structures ; Volume 204 , 2018 , Pages 855-881 ; 02638223 (ISSN) Fallah, F ; Taati, E ; Asghari, M ; Reddy, J. N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The feasibility and performance of standard and boundary layer perturbation techniques in nonlinear analyses of cylindrical shells are investigated. To this end, the nonlinear axisymmetric behavior of short and long functionally graded (FG) cylindrical shells is considered. The nonlinear governing equations of shell theory with first-order approximation and the von Karman nonlinearity are decoupled. This uncoupling makes it possible to present an analytical solution. A new boundary layer perturbation solution is presented by reducing the governing equations to a normalized form of boundary-layer type. Also, the uncoupled governing equations are solved using standard one-, two-, and... 

    On the nonlinear dynamics of trolling-mode AFM: analytical solution using multiple time scales method

    , Article Journal of Sound and Vibration ; Volume 423 , 9 June , 2018 , Pages 263-286 ; 0022460X (ISSN) Sajjadi, M. R ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2018
    Abstract
    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the... 

    Stability analysis of distributed-order nonlinear dynamic systems

    , Article International Journal of Systems Science ; Volume 49, Issue 3 , 2018 , Pages 523-536 ; 00207721 (ISSN) Taghavian, H ; Tavazoei, M. S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    The problem of asymptotic stability analysis of equilibrium points in nonlinear distributed-order dynamic systems with non-negative weight functions is considered in this paper. The Lyapunov direct method is extended to be used for this stability analysis. To this end, at first, a discretisation scheme with convergence property is introduced for distributed-order dynamic systems. Then, on the basis of this tool, Lyapunov theorems are proved for asymptotic stability analysis of equilibrium points in distributed-order systems. As the order weight function assumed for the distributed-order systems is general enough, the results are applicable to a wide range of nonlinear distributed-order... 

    Nonlinear transient heat transfer and thermoelastic analysis of thick-walled FGM cylinder with temperature-dependent material properties using hermitian transfinite element

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 10 , 2009 , Pages 2635-2644 ; 1738494X (ISSN) Azadi, M ; Azadi, M ; Sharif University of Technology
    2009
    Abstract
    Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature-dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present... 

    Endurance time method-application in nonlinear seismic analysis of single degree of freedom systems

    , Article Journal of Applied Sciences ; Volume 9, Issue 10 , 2009 , Pages 1817-1832 ; 18125654 (ISSN) Tajmir Riahi, H ; Ismail pour Estekanchi, H ; Vafai, A ; Sharif University of Technology
    2009
    Abstract
    Endurance Time (ET) method has been introduced as a lime-history based dynamic analysis procedure. In this method, structures are subjected to a gradually intensifying acceleration function. Performance of the structures is assessed based on the length of the time interval that they can satisfy required performance objectives. In this study, some fundamental concepts of ET method are explained and the potentials and limitations of this procedure in nonlinear seismic analysis of SDOF structures are investigated. A numerical optimization procedure for generating ET acceleration functions that are compatible with ground motions are explained. Results of ET analysis for inelastic SDOF systems... 

    ECG denoising using parameters of ECG dynamical model as the states of an extended Kalman filter

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 2548-2551 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Sayadi, O ; Sameni, R ; Shamsollahi, M. B ; Sharif University of Technology
    2007
    Abstract
    In this paper an efficient Altering procedure based on the Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. We have suggested simple dynamics as the governing equations for the model parameters. Since we have not any observation for these new state variables, they are considered as hidden states. Quantitative evaluation of the proposed algorithm on the MIT-BIH signals shows that an average SNR improvement of 12 dB is achieved for a signal of -5 dB. The results show improved output SNRs compared to the EKF outputs in the absence of these new dynamics. © 2007 IEEE  

    Improving the seismic performance of diagrid structures using buckling restrained braces

    , Article Journal of Constructional Steel Research ; Volume 166 , 2020 Sadeghi, S ; Rofooei, F. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The seismic performance of diagrids equipped with buckling restrained braces (BRBs) is investigated. In that regard, the effects of BRBs on the seismic performance characteristics of diagrids such as response modification factor, R, overstrength factor, Ω0, ductility ratio, μ, and median collapse capacity, S^CT, are evaluated. To this end, 6 three dimensional diagrid structures with various heights and diagonal angles are modeled using OpenSees program and are equipped with BRBs in a novel arrangement. Utilizing nonlinear static analysis, the seismic performance factors of models are evaluated. Subsequently, the median collapse capacity (S^CT) of the models are determined by performing... 

    Evaluation of the equivalent mechanical properties in a novel composite cruciform honeycomb using analytical and numerical methods

    , Article Composite Structures ; Volume 275 , 2021 ; 02638223 (ISSN) Farrokhabadi, A ; Ashrafian, M. M ; Gharehbaghi, H ; Nazari, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a novel theoretical model is developed, based on the energy method, to predict the equivalent mechanical properties of a new morphing structure with zero Poisson's ratio, which is composed of continuous fiber reinforced composite struts. Due to the employing glass fiber in fabricating the proposed cruciform honeycomb, higher strength than the structures made of pure isotropic materials is obtained. The use of cells with a zero Poisson's ratio also increases the flexural strength of the structure. In the continuation of the paper, by examining the geometric effects on the equivalent properties, a parametric study is performed. Then, using the appropriate failure... 

    Stability analysis for design improvement of bio-inspired flapping wings by energy method

    , Article Aerospace Science and Technology ; Volume 111 , 2021 ; 12709638 (ISSN) Kamankesh, Z ; Banazadeh, A ; Sharif University of Technology
    Elsevier Masson s.r.l  2021
    Abstract
    This study attempts to reach a broad understanding of the stability properties of nonlinear time-periodic flapping wing structures. Two bio-system models, Hummingbird (6DOF) and Hawkmoth (3DOF) are developed for this purpose. Initial analysis on the Hummingbird model, which is based on the Floquet theory, kinetic energy integration, and phase portrait technique, indicates lack of stability in hover flight. Kinetic energy integration is carried out on the extended model of the Hawkmoth to find the domain of attraction and increase the level of stability by varying the design parameters. Here, the hinge location of the wing, flapping amplitude, flapping frequency, and mean angle of attack are... 

    Designing nonlinear observer for topography estimation in trolling mode atomic force microscopy

    , Article JVC/Journal of Vibration and Control ; 2021 ; 10775463 (ISSN) Sajjadi, M ; Chahari, M ; Pishkenari, H. N ; Vossoughi, G ; Sharif University of Technology
    SAGE Publications Inc  2021
    Abstract
    In this study, a nonlinear observer for high-speed estimation of the sample surface topography in a small duration of the probe transient motion utilizing a 2DOF model of TR-AFM is proposed. Since the time duration to reach the steady-state periodic motion of the oscillating probe in conventional imaging methods is relatively high, the proposed nonlinear observer in this research is able to address this limitation and estimate the surface topography throughout transient oscillation of the microcantilever. With this aim, topography estimation process utilizing a Thau observer without any linearization of the system dynamics is designed and coupled with the system dynamics to achieve sample... 

    Nonlinear seismic behavior of elliptic-braced moment resisting frame using equivalent braced frame

    , Article Steel and Composite Structures ; Volume 40, Issue 1 , 2021 , Pages 45-64 ; 12299367 (ISSN) Ghasemi Jouneghani, H ; Haghollahi, A ; Talebi Kalaleh, M ; Beheshti Aval, B ; Sharif University of Technology
    Techno-Press  2021
    Abstract
    Recently, the elliptic-braced moment resisting frame (ELBRF) which is a new lateral bracing system installed in the middle bay of the frame in the facade of buildings is introduced. This system not only prevents a solution for opening space problem in view of architectural aspects, but also improves the structural behavior. The main drawback of its using in view of numerical modeling in multistory buildings is lack of curved frame element in design and analysis software. To overcome this shortcoming, in this paper, for the first time, an equivalent element for elliptic brace is presented for ELBRF through a laboratory program and nonlinear finite element analysis, which will contribute to...