Loading...
Search for: numerical-methods
0.018 seconds
Total 917 records

    Investigation of the Fire-Induced Smoke Flow in the Complex Geometries Using The 3d Numerical Method and the Body-Fitted Curvilinear Coordinates

    , Ph.D. Dissertation Sharif University of Technology Savalanpour Ardebili, Hamid Reza (Author) ; Farhanieh, Bijan (Supervisor) ; Afshin, Hossein (Co-Supervisor)
    Abstract
    With the process of achieving a higher state of social development and technological advances, the need for higher and more strict safety standards has been increased. In this regard, it is of great importance to have an accurate understanding of the fire phenomena and its consequences. Among the adverse effects of fire, a significant percentage of the fire fatalities is related to the fire-induced buoyant gases (smoke) flow which can lead to suffocation. Therefore, it is necessary to know the physics of the fire phenomena well. In fire investigation methods, the numerical study is an appropriate choice, because of the lower executive cost (relative to the experimental study) and the wider... 

    Solving High-Dimensional Differential Equations Using Machine Learning

    , M.Sc. Thesis Sharif University of Technology Saffarieh, Pooya (Author) ; Razvan, Mohammad Reza (Supervisor) ; Moghadasi, Reza (Co-Supervisor)
    Abstract
    The numerical solution of differential equations in high dimensions has always been a challenge and has been associated with various computational difficulties. These equations appear naturally in a variety of problems such as financial mathematics, control, and physics, and their optimal solution with high accuracy and speed can open new windows on new applications. Conventional methods such as Finite element and finite difference method in high dimensions lose their efficiency, which is a barrier to fast and accurate calculation of these equations. In this dissertation first, we review some theoretical and practical aspects of deep neural networks and then we try to examine the recent... 

    Study of Vortex-Induced Vibration of Cylindrical Structure Using Numerical Method

    , M.Sc. Thesis Sharif University of Technology Seyedsharifi, Zahra (Author) ; Raie, Mohammad (Supervisor)
    Abstract
    The purpose of this study is to numerically investigate the Vortex-Induced Vibration (VIV) around the cylinder, which occurs in many engineering structures, including offshore structures, offshore risers, deep-sea pipelines, bridges, cables, and tall buildings. This phenomenon is non-linear and self-limitting and is the major cause of fatigue and failure in engineering structures. At the same time, it is possible to harvest Aquatic Clean Energy from Vortex-Induced Vibration. This research investigates the single degree of freedom and two degrees of freedom oscillator. The numerical model is validated using an experimental model in the Sharif University of Technology's advanced hydraulics... 

    Numerical Investigation of Off-axis translocation, Shape, and the Electrical Charge of a Nanoparticle in the Nanofluidic Conduit

    , M.Sc. Thesis Sharif University of Technology Jodeyri, Zohreh (Author) ; Taghipoor, Mojtaba (Supervisor)
    Abstract
    The advent of nanopore-based sensors based on resitive pulse sensing gave rise to a remarkable breakthrough in the detection and characterization of nanoscale species. The sensors can detect the species’concentration, size, and charge using the resistive pulse characteristics. Some strong correlations have been reported between the resitive pulse characteristics and the particle’s geometrical and physical properties. These correlations are commonly used to obtain information about the particles in commercial devices and research setups. The correlations, however, do not consider the simultaneous effect of influential factors such as particle shape, charge, and off-axis translocation, which... 

    Design of a SF6 Load Breaker Switch for Compact Distribution Substation

    , M.Sc. Thesis Sharif University of Technology Akbari, Mohammad (Author) ; Vakilian, Mehdi (Supervisor)
    Abstract
    Electrical energy customer and load growth on the one hand and the problems of allocation of land for the development of the power networks on the other hand, make the tendency to use less space in the electrical industries. One of the solutions used in power distribution networks, especially in crowded areas is compact substation which requires less space than ordinary substations and also the prefabricated types of this substation can be used in the distribution system. In a compact distribution substation, all components must be designed with a minimum size. Therefore, the insulation system of the compact substation should be designed based on these requirements.
    In the distribution... 

    Numerical Simulation of Non-Newtonian Droplet Formation under External Electric Field in a Microfluidic Device

    , M.Sc. Thesis Sharif University of Technology Amiri, Nasir (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Droplet formation and breakup processes are one of the important steps in many microfluidic devices with a wide range of biological and chemical applications. The purpose of this study is numerical simulation of non-Newtonian droplet formation under the influence of electric field in a microfluidic system. The innovation aspect of this project is the use of non-Newtonian fluid in this process, which, despite many applications in real issues, has been less studied, and in most of the previous researches, Newtonian fluid assumption has been used to simplify the solving. Also, simultaneously, the effects of an external electric field on this process were also studied. Carboxymethyl cellulose... 

    Effect of response related weighting matrices on performance of active control systems for nonlinear frames

    , Article International Journal of Structural Stability and Dynamics ; Volume 17, Issue 3 , 2017 ; 02194554 (ISSN) Mohebbi, M ; Joghataie, A ; Rasouli Dabbagh, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    In this paper, the effect of various arrangements of displacement, velocity and acceleration related weighting matrices on the performance of active control systems on nonlinear frames has been studied. Different arrangements of weighting matrices and feedback combinations of the response have been considered to design the active controllers using a single actuator for reducing the response of an eight-storey bilinear hysteretic frame under white noise excitations. The nonlinear Newmark-based instantaneous optimal control algorithm has been used, where the distributed genetic algorithm (DGA) is employed to determine the proper set of weighting matrices. For each set of feedback and weighting... 

    Static pull-in analysis of electrostatically actuated functionally graded micro-beams based on the modified strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 10, Issue 3 , 2018 ; 17588251 (ISSN) Taati, E ; Sina, N ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2018
    Abstract
    In this paper, the static pull-in behavior of electrostatically actuated functionally graded (FG) micro-beams resting on an elastic medium is studied using the modified strain gradient (MSG) theory. To this end, the equilibrium equation along with classical and non-classical boundary conditions is obtained by considering the fringing field and elastic foundations effects within the principle of minimum total potential energy. Also, the elastic medium is composed of a shear layer (Pasternak foundation) and a linear normal layer (Winkler foundation). The governing differential equation is solved for cantilever and doubly fixed FG beams using an iterative numerical method. This method is a... 

    Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 10 , 2019 ; 17588251 (ISSN) Moayedi, H ; Habibi, M ; Safarpour, H ; Safarpour, M ; Foong, L. K ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    This is the first research on the vibration and buckling analysis of a graphene nanoplatelet composite (GPLRC) microdisk in the framework of a numerical based generalized differential quadrature method (GDQM). The stresses and strains are obtained using the higher-order shear deformable theory (HOSDT). Rule of the mixture is employed to obtain varying mass density, thermal expansion, and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. Governing equations and boundary conditions of the GPLRC microdisk are obtained by implementing Extended Hamilton's principle. The results show that outer to inner ratios of the radius (Ro/Ri), ratios of length scale... 

    Analysis of in-plane vibration and critical speeds of the functionally graded rotating disks

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 2 , 2019 ; 17588251 (ISSN) Bagheri, E ; Jahangiri, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    In this paper, the in-plane free vibration analysis of the functionally graded rotating disks with variable thickness is presented utilizing DQM. It is assumed that the rotational velocity of the disk is constant and the thickness and material properties including modulus of elasticity and density vary along the radial coordinate. The distribution of the forward and backward traveling waves versus the angular velocity is demonstrated for several modal circles and nodal diameters with respect to the fixed and rotating coordinate systems. After presenting the accuracy and convergence of the numerical method, the derived formulation and the solution method are validated by comparing the results... 

    Thermal buckling responses of a graphene reinforced composite micropanel structure

    , Article International Journal of Applied Mechanics ; Volume 12, Issue 1 , 2020 Moayedi, H ; Aliakbarlou, H ; Jebeli, M ; Noormohammadiarani, O ; Habibi, M ; Safarpour, H ; Foong, L. K ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2020
    Abstract
    This is the first research on the thermal buckling analysis of graphene nanoplatelets reinforced composite (GPLRC) doubly curved open cylindrical micropanel in the framework of numerical-based two-dimensional generalized differential quadrature method (2D-GDQM). Additionally, the small-scale effects are analyzed based on nonlocal strain gradient theory (NSGT). The stresses and strains are obtained using the high-order shear deformable theory (HOSDT). The rule of mixture is employed to obtain varying thermal expansion, and Poisson's ratio, while module of elasticity is computed by modified Halpin-Tsai model. In addition, nonlinear temperature changes along the GPLRC micropanel's thickness... 

    Toward multiscale modeling of wave propagation in arteries

    , Article Journal of Mechanics in Medicine and Biology ; Volume 16, Issue 3 , 2016 ; 02195194 (ISSN) Raustin, R ; Mohammadi, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd 
    Abstract
    In this study, we apply a novel numerical technique for modeling the propagation of mechanical wave in the human arteries using the multiscale method. We define a particle region characterized by molecular dynamics (MD) method which is surrounded by a continuous region characterized by a finite element (FE) method. The interface between the two models are defined so as to minimize spurious reflections at the interface. This is a preliminary work for the modeling of the mechanical stability of atherosclerosis plaques using multiscale method. The model offered has extensive application in cell mechanics  

    Resolving a critical instability in perovskite solar cells by designing a scalable and printable carbon based electrode-interface architecture

    , Article Advanced Energy Materials ; Volume 8, Issue 31 , 2018 ; 16146832 (ISSN) Mashhoun, S ; Hou, Y ; Chen, H ; Tajabadi, F ; Taghavinia, N ; Egelhaaf, H. J ; Brabec, C. J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Thin-film solar cells based on hybrid organo-halide lead perovskites achieve over 22% power conversion efficiency (PCE). A photovoltaic technology at such high performance is no longer limited by efficiency. Instead, lifetime and reliability become the decisive criteria for commercialization. This requires a standardized and scalable architecture which does fulfill all requirements for larger area solution processing. One of the most highly demanded technologies is a low temperature and printable conductive ink to substitute evaporated metal electrodes for the top contact. Importantly, that electrode technology must have higher environmental stability than, for instance, an evaporated silver... 

    Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability

    , Article Advanced Energy Materials ; Volume 8, Issue 23 , 2018 ; 16146832 (ISSN) Tavakoli, M. M ; Yadav, P ; Tavakoli, R ; Kong, J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high-performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a-SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double-layer structure of TiO2 compact layer (c-TiO2) and a-SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a-SnO2/c-TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c-TiO2 based device.... 

    Quantum integrability of 1D ionic hubbard model

    , Article Annalen der Physik ; Volume 532, Issue 3 , 2020 Hosseinzadeh, A ; Jafari, S. A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    The quantum integrability of the 1D ionic Hubbard model (IHM) is established using two independent numerical methods, namely i) energy level spacing statistics and ii) occupation profile of one-particle density matrix (OPDM) eigen-values. Both methods suggest that the 1D IHM is integrable. The calculations of energy level statistics reproduce the known results for the standard Hubbard model. Upon turning on the the ionic term, the energy level spacing distribution of this model continues to obey the Poissonian distribution. Occupation patterns as extracted from OPDM indicate that quasi-particles are sharpened upon increasing the ionic potential. This is evidenced by a larger jump in the... 

    OptCAM: An ultra-fast all-optical architecture for DNA variant discovery

    , Article Journal of Biophotonics ; Volume 13, Issue 1 , August , 2020 Maleki, E ; Koohi, S ; Kavehvash, Z ; Mashaghi, A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Nowadays, the accelerated expansion of genetic data challenges speed of current DNA sequence alignment algorithms due to their electrical implementations. Essential needs of an efficient and accurate method for DNA variant discovery demand new approaches for parallel processing in real time. Fortunately, photonics, as an emerging technology in data computing, proposes optical correlation as a fast similarity measurement algorithm; while complexity of existing local alignment algorithms severely limits their applicability. Hence, in this paper, employing optical correlation for global alignment, we present an optical processing approach for local DNA sequence alignment to benefit both... 

    Circular chromatic index of graphs of maximum degree 3

    , Article Journal of Graph Theory ; Volume 49, Issue 4 , 2005 , Pages 325-335 ; 03649024 (ISSN) Afshani, P ; Ghandehari, M ; Ghandehari, M ; Hatami, H ; Tusserkani, R ; Zhu, X ; Sharif University of Technology
    Wiley-Liss Inc  2005
    Abstract
    This paper proves that if G is a graph (parallel edges allowed) of maximum degree 3, then χc′(G) ≤ 11/3 provided that G does not contain H1 or H2 as a subgraph, where H1 and H2 are obtained by subdividing one edge of K23 (the graph with three parallel edges between two vertices) and K4, respectively. As χc′(H1) = χ c′(H2) = 4, our result implies that there is no graph G with 11/3 < χc′(G) < 4. It also implies that if G is a 2-edge connected cubic graph, then χc′(G) ≤ 11/3. © 2005 Wiley Periodicals, inc  

    Model predictive control of nonlinear discrete time systems with guaranteed stability

    , Article Asian Journal of Control ; 2018 ; 15618625 (ISSN) Shamaghdari, S ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2018
    Abstract
    This paper presents the design of a new robust model predictive control algorithm for nonlinear systems represented by a linear model with unstructured uncertainty. The linear model is obtained by linearizing the nonlinear system at an operating point and the difference between the nonlinear and linear model is considered as a Lipschitz nonlinear function. The controller is designed for the linear model, which fulfills the stabilization condition for the nonlinear term. Unlike previous studies that have not considered a valid Lipschitz matrix of nonlinear term in the design process, we propose an algorithm in this paper in which it is considered. Therefore, the closed loop stability of the... 

    Model predictive control of nonlinear discrete time systems with guaranteed stability

    , Article Asian Journal of Control ; Volume 22, Issue 2 , 2020 , Pages 657-666 Shamaghdari, S ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    This paper presents the design of a new robust model predictive control algorithm for nonlinear systems represented by a linear model with unstructured uncertainty. The linear model is obtained by linearizing the nonlinear system at an operating point and the difference between the nonlinear and linear model is considered as a Lipschitz nonlinear function. The controller is designed for the linear model, which fulfills the stabilization condition for the nonlinear term. Unlike previous studies that have not considered a valid Lipschitz matrix of nonlinear term in the design process, we propose an algorithm in this paper in which it is considered. Therefore, the closed loop stability of the... 

    Nonlinear vibration analysis of directional drill string considering effect of drilling mud and weight on bit

    , Article Journal of Vibroengineering ; Volume 18, Issue 2 , 2016 , Pages 1280-1287 ; 13928716 (ISSN) Taheran, F ; Monfared, V ; Daneshmand, S ; Abedi, E ; Sharif University of Technology
    Vibromechanika  2016
    Abstract
    In this paper a nonlinear dynamic model for drill string in inclined well drilling is developed. Effects of drilling mud flow rate, weight on bit, angular velocity along with viscous damping on stability and vibration of the drill string are studied. Findings indicate the nonlinear effects are significant on the results. The effects of drilling mud flow rate and weight on bit on the natural frequencies and time responses are evaluated. Enhancement of drilling mud flow rate results in decreasing of natural frequencies and vibrational amplitude, while increasing the weight on bit, leads to decrease of the natural frequencies and increase the vibrational amplitude. © JVE INTERNATIONAL LTD