Loading...
Search for: numerical-methods
0.026 seconds
Total 917 records

    Development of a semi-empirical method for hydro-aerodynamic performance evaluation of an AAMV, in take-off phase

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 37, Issue 3 , May , 2015 , Pages 987-999 ; 16785878 (ISSN) Maali Amiri, M ; Tavakoli Dakhrabadi, M ; Seif, M. S ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    An assessment of the relative speeds and payload capacities of airborne and waterborne vehicles accentuates a gap that can be usefully filled by a new vehicle concept, making use of both hydrodynamic and aerodynamic forces. A high speed marine vehicle equipped with aerodynamic surfaces (called an AAMV, ‘aerodynamically alleviated marine vehicle’) is one such concept. There are three major modes of motion in the operation of an AAMV including take-off, cruising and landing. However, during take-off, hydrodynamic and aerodynamic problems of an AAMV interact with each other in a coupled manner, which make the evaluation of this phase much more difficult. In this article, at first aerodynamic... 

    Continuous neural network with windowed Hebbian learning

    , Article Biological Cybernetics ; Volume 109, Issue 3 , June , 2015 , Pages 321-332 ; 03401200 (ISSN) Fotouhi, M ; Heidari, M ; Sharifitabar, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    We introduce an extension of the classical neural field equation where the dynamics of the synaptic kernel satisfies the standard Hebbian type of learning (synaptic plasticity). Here, a continuous network in which changes in the weight kernel occurs in a specified time window is considered. A novelty of this model is that it admits synaptic weight decrease as well as the usual weight increase resulting from correlated activity. The resulting equation leads to a delay-type rate model for which the existence and stability of solutions such as the rest state, bumps, and traveling fronts are investigated. Some relations between the length of the time window and the bump width is derived. In... 

    A mode conversion-based algorithm for detecting rectangular notch parameters in plates using Lamb waves

    , Article Archive of Applied Mechanics ; Volume 85, Issue 6 , 2015 , Pages 793-804 ; 09391533 (ISSN) Ghadami, A ; Behzad, M ; Mirdamadi, H. R ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    In this paper, an algorithm for identifying rectangular notch parameters as damage in a plate using Lamb waves is presented. In this algorithm, a combination of pulse-echo and pitch-catch methods is used. The method is divided into two steps: notch localization and notch geometry detection. The bases for this algorithm are mode conversion and scattering phenomena because of interaction of Lamb wave modes with defects. The method is applied to some numerical examples, and the results show that it can successfully identify all of rectangular notch parameters, i.e., its location, depth, and width  

    A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 16, Issue 3 , 2017 , Pages 1077-1093 ; 16177959 (ISSN) Elyasi, N ; Karimi Taheri, K ; Narooei, K ; Karimi Taheri, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney–Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney–Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the... 

    A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves

    , Article Landslides ; Volume 14, Issue 1 , 2017 , Pages 203-221 ; 1612510X (ISSN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    This paper presents a new landslide-generated wave (LGW) model based on incompressible Euler equations with Savage-Hutter assumptions. A two-layer model is developed including a layer of granular-type flow beneath a layer of an inviscid fluid. Landslide is modeled as a two-phase Coulomb mixture. A well-balanced second-order finite volume formulation is applied to solve the model equations. Wet/dry transitions are treated properly using a modified non-linear method. The numerical model is validated using two sets of experimental data on subaerial and submarine LGWs. Impulsive wave characteristics and landslide deformations are estimated with a computational error less than 5 %. Then, the... 

    Numerical study of propulsion performance in swimming fish using boundary element method

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 39, Issue 2 , 2017 , Pages 443-455 ; 16785878 (ISSN) Najafi, S ; Abbaspour, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In this paper, hydrodynamic simulation of fish-like swimming for two types of aquatic animals including tuna fish and giant danio is presented. We employ an unsteady three-dimensional inviscid boundary element method including time stepping algorithm to capture the wake sheet and flow features around swimming fish in a straight course. At each time step, an unsteady Bernoulli equation was used to find the pressure distribution and thrust generated by the animal. To couple fluid solver with kinematic equations of flexible body, undulating motions of backbone were defined using a prescribed continuous function. Although the flexible motion mechanism controls the fish swimming but no structural... 

    A heuristic scheduling method for the pipe-spool fabrication process

    , Article Journal of Ambient Intelligence and Humanized Computing ; Volume 9, Issue 6 , 2018 , Pages 1901-1918 ; 18685137 (ISSN) Safarzadeh, S ; Shadrokh, S ; Salehian, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The pipe-spool fabrication process is a critical operational section in the piping projects that usually used to accelerate and discipline the installation process, especially, when we have a particular deadline for the project. For this reason, the fast and optimal scheduling of the fabrication activities with considering the real conditions and using manual or traditional methods is a significant problem for the decision-makers. In this paper, we use a novel linear programming model to schedule the spool fabrication activities based on the flexible job shop scheduling problem (FJSP). Because FJSP is a challengeable NP-hard problem, we solve the proposed mathematical model with a heuristic... 

    Damage identification in multi-step waveguides using Lamb waves and scattering coefficients

    , Article Archive of Applied Mechanics ; Volume 88, Issue 6 , June , 2018 , Pages 1009-1026 ; 09391533 (ISSN) Ghadami, A ; Behzad, M ; Mirdamadi, H. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Damage detection in uniform structures has been studied in numerous previous researches. However, damage detection in non-uniform structures is less studied. In this paper, a damage detection algorithm for identifying rectangular notch parameters in a stepped waveguide using Lamb waves is presented. The proposed algorithm is based on mode conversion and scattering phenomena because of interaction of Lamb wave modes with defects. The analysis is divided into two steps: notch localization and notch geometry detection. The main advantage of this method is its ability to detect all of the notch parameters in a waveguide with arbitrary number of step discontinuities. The method is applied to a... 

    General framework for dynamic large deformation contact problems based on phantom-node X-FEM

    , Article Computational Mechanics ; Volume 61, Issue 4 , April , 2018 , Pages 449-469 ; 01787675 (ISSN) Broumand, P ; Khoei, A. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method. © 2017, Springer-Verlag GmbH Germany  

    On the applicability range of Cassie–Baxter and Wenzel equation: a numerical study

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 10 , 2019 ; 16785878 (ISSN) Azadi Tabar, M ; Barzegar, F ; Ghazanfari, M. H ; Mohammadi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this study, the range of applicability for Cassie–Baxter and Wenzel equations for estimating apparent contact angle on rough surfaces is numerically discussed. To do this, circular drops with different sizes are simulated on rough surfaces with a square pillar pattern and randomly distributed cylindrical pillar. With the aid of numerical method, the local surface fraction, local length fraction and local roughness factor for drops with different sizes on the surface are computed. Then, the global surface fraction and global roughness factor have been compared with the local surface fraction and local roughness factor, respectively. Local surface and local length fractions, as well as... 

    Dielectrophoretic interaction of two particles in a uniform electric field

    , Article Microsystem Technologies ; Volume 25, Issue 7 , 2019 , Pages 2699-2711 ; 09467076 (ISSN) Javidi, R ; Moghimi Zand, M ; Dastani, K ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The local electric field distorsion induced by a dielectric particle leads to particle–particle interactions and assembly which is very interesting for their useful applications on microfluidic devices. Particles behavior becomes more complicated if several particles interact at the same time. This paper presents a comprehensive numerical analysis of the assembly and particle–particle interactions for two similar and dissimilar dielectric particles immersed in a dielectric fluid using the immersed interface method based on two-dimensional direct-current dielectrophoresis. The immersed interface method is a finite-difference (or finite element) based numerical method which its key advantage... 

    Weakly compressible SPH simulation of cnoidal waves with strong plunging breakers

    , Article Ocean Dynamics ; Volume 69, Issue 6 , 2019 , Pages 657-678 ; 16167341 (ISSN) Sarfaraz, M ; Pak, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Hydrodynamics of highly nonlinear cnoidal waves and their subsequent strong plunging breakers are among the least understood and most significant issues in coastal engineering. In this work, a weakly compressible smoothed particle hydrodynamics (SPH) formulation is used for the study of the generation and propagation of cnoidal waves and investigation of the characteristics of the induced strong plunging breakers. Numerical results show the capability of the SPH scheme for properly simulating the cnoidal waves. For the case of strong plunging breakers, dynamic and kinematic features of the flow are computed and compared with certain implementations of other numerical techniques. SPH is shown... 

    Perturbation nonlinear response of tension leg platform under regular wave excitation

    , Article Journal of Marine Science and Technology (Japan) ; Volume 23, Issue 1 , March , 2018 , Pages 132-140 ; 09484280 (ISSN) Tabeshpour, M. R ; Shoghi, R ; Sharif University of Technology
    Springer Tokyo  2018
    Abstract
    Conceptual discussion on highly nonlinear Duffing type equation of surge motion of TLP gives a deep view on structural response under environmental loads with some simplifications. Such analytical response is a simple form that clarifies important points in behavior of the structure. This paper presents the dynamic motion responses of a TLP in regular sea waves obtained by applying three methods in time domain using MATLAB software. Surge motion equation of TLP is highly nonlinear because of large displacement and it should be solved with large perturbation parameter in time domain. In this paper, homotopy perturbation method (HPM) is used to solve highly nonlinear differential equation of... 

    Multi-objective robust design optimization (MORDO) of an aeroelastic high-aspect-ratio wing

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 11 , 2020 Elyasi, M ; Roudbari, A ; Hajipourzadeh, P ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    In this paper, a new approach for multi-objective robust optimization of flutter velocity and maximum displacement of the wing tip are investigated. The wing is under the influence of bending–torsion coupling and its design variables have different levels of uncertainty. In designing and optimizing wings with a high aspect ratio, the optimization process can be done in such a way to increase the flutter velocity, but this can increase the amplitude of the wing tip displacement to a point that leads to the wings damage and structural failure. Therefore, single-objective design optimization may lead to infeasible designs. Thus, for multi-objective optimization, modeling is based on the... 

    Low-speed wind energy harvesting from a vibrating cylinder and an obstacle cylinder by flow-induced vibration effect

    , Article International Journal of Environmental Science and Technology ; 2021 ; 17351472 (ISSN) Farsi, M ; Shariatzadeh, M. J ; Bijarchi, M. A ; Pournasiri Masouleh, E ; Shafii, M. B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    An experimental setup has been developed to analyse the impact of cylinder transverse vibration caused by flow-induced vibration, and to improve wind energy harvesting from these vibrations. The setup consists of a cylinder mounted on four springs and is subjected to a uniform and steady flow of wind. In the first part, the effect of mounting a fixed cylinder as an obstacle with different diameters and distances from the downstream vibrating cylinder is investigated. It has been observed that the vibration amplitude on the wake of an unequal-sized obstacle is greatly amplified compared to the case of a single cylinder or an equal-sized cylinder. Numerical simulations has been conducted to... 

    Experimental and numerical investigation of the effect of laser input energy on the mechanical behavior of stainless steel and polyamide joint in the LAMP joining method

    , Article International Journal of Advanced Manufacturing Technology ; Volume 113, Issue 11-12 , 2021 , Pages 3585-3597 ; 02683768 (ISSN) Ghanavati, R ; Ranjbarnodeh, E ; Shoja Razavi, R ; Pircheraghi, G ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The present study investigated the effect of laser input energy on the quality and mechanical behavior of a 304 stainless steel–polyamide 6 joint in the laser-assisted metal and polymer direct joining (LAMP) method experimentally and numerically. After the proposed heat transfer model was validated, it was determined whether there was an optimal amount of laser input energy that could produce a joint with favorable quality and mechanical behavior. Among different laser input energies used in this study, 28-J/mm energy can provide more uniform and extensive wetting of the metal surface by the polymer, while excessive polymer degradation in the joint zone was prevented. As a result, an optimal... 

    Nonlinear vibrations of a rotor on nonlinear tilting-pad-journal-bearings

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 43, Issue 3 , February , 2021 ; 16785878 (ISSN) Hojjati, M ; Mohammad Navazi, H ; Haddadpour, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, the coupled equations of nonlinear vibrations of a rigid two-dimensional rotor supported on tilting-pad-journal-bearing under harmonic excitation have been studied using second-order multiple scales method. By considering a nonlinear quadratic model for tilting-pad-journal-bearings, the governing coupled nonlinear differential equations of motion are presented. The frequency response function of the system, the effect of excitation force on the response, and stability of the system are discussed in different operating conditions using the method of multiple scales and validated with a numerical method. The results show that the system may have hardening or softening behavior... 

    Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects

    , Article Archives of Civil and Mechanical Engineering ; Volume 22, Issue 4 , 2022 ; 16449665 (ISSN) Sarparast, H ; Alibeigloo, A ; Borjalilou, V ; Koochakianfard, O ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Forced and free vibrational analyses of viscoelastic nanotubes containing fluid under a moving load in complex environments incorporating surface effects are conducted based on the nonlocal strain gradient theory and the Rayleigh beam model. To model the internal nanoflow, the slip boundary condition is employed. Adopting the Galerkin discretization approach, the reduced-order dynamic model of the system is acquired. Analytical and numerical methods are exploited to determine the dynamic response of the system. The impacts of geometry, scale parameter ratio, Knudsen number, fluid velocity, rotary inertia parameter, viscoelastic parameter, surface residual stress, surface elastic modulus, and... 

    Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods

    , Article Engineering with Computers ; Volume 38 , 2022 , Pages 4127-4143 ; 01770667 (ISSN) Wu, J ; Habibi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In the presented research, vibrational, and amplitude behaviors of a sandwich spinning disk made of two laminated layers and graphene nanoplatelets reinforced composite (GPLRC) core has been reported. The Coriolis and centrifugal impacts have been taken into account due to its rotational feature. The stresses and strains have been obtained through the high-order shear deformable theory (HSDT). The structure’s boundary conditions (BCs) are determined using laminated rotating disk’s governing equations employing energy methods and ultimately have been solved via a computational approach called generalized differential quadrature method (GDQM). The rotational disk’s vibrations with different... 

    Low-speed wind energy harvesting from a vibrating cylinder and an obstacle cylinder by flow-induced vibration effect

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 3 , 2022 , Pages 1261-1272 ; 17351472 (ISSN) Farsi, M ; Shariatzadeh, M. J ; Bijarchi, M. A ; Pournasiri Masouleh, E ; Shafii, M. B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    An experimental setup has been developed to analyse the impact of cylinder transverse vibration caused by flow-induced vibration, and to improve wind energy harvesting from these vibrations. The setup consists of a cylinder mounted on four springs and is subjected to a uniform and steady flow of wind. In the first part, the effect of mounting a fixed cylinder as an obstacle with different diameters and distances from the downstream vibrating cylinder is investigated. It has been observed that the vibration amplitude on the wake of an unequal-sized obstacle is greatly amplified compared to the case of a single cylinder or an equal-sized cylinder. Numerical simulations has been conducted to...