Loading...
Search for: oil-recovery-efficiency
0.006 seconds
Total 23 records

    Smart water flooding performance in carbonate reservoirs: an experimental approach for tertiary oil recovery

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 4 , 2019 , Pages 2643-2657 ; 21900558 (ISSN) Darvish Sarvestani, A ; Ayatollahi, S ; Bahari Moghaddam, M ; Sharif University of Technology
    Springer  2019
    Abstract
    Smart water flooding as a developing technique utilizes modified water chemistry in terms of salinity and composition to prepare the best-suited brine composition for a specific brine/oil/rock system to obtain higher oil recovery efficiency. Huge amount of unrecovered oil is expected to be remained in carbonate reservoirs; however, few research works on incremental oil recovery during smart water injection in carbonate cores at reservoir condition are reported. Several core flooding tests using one of the Iranian carbonate reservoir rock are conducted to check the effectiveness of smart water injection for more oil recovery efficiency. The results reaffirm the positive effect of sulfate ions... 

    Activating solution gas drive as an extra oil production mechanism after carbonated water injection

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 11 , 2020 , Pages 2938-2945 Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Materials China  2020
    Abstract
    Enhanced oil recovery (EOR) methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases. Over the last decade, carbonated water injection (CWI) has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency. During CWI process, as the reservoir pressure declines, the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur. As a result, it can lead to oil saturation restoration and subsequently, oil displacement due to the hysteresis effect. At this condition, CO2 would act as in-situ dissolved gas into the oil... 

    Experimental investigation of factors affecting miscible two-phase flow in fractured and non-fractured micromodels

    , Article Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, 23 June 2008 through 25 June 2008, Darmstadt ; Issue PART B , 2008 , Pages 1027-1034 ; 0791848345 (ISBN); 9780791848340 (ISBN) Farzaneh, A ; Kharrat, R ; Ghazanfari, M. H ; ASME ; Sharif University of Technology
    2008
    Abstract
    Micromodel is small-scale artificial model of porous medium which is known as a novel approach for simulating flow and transport in porous media. For better understanding the effect of fracture geometrical properties on oil recovery efficiency, a series of first contact miscible solvent injection process were conducted on horizontal glass micromodels at several fixed flow rate conditions. The micromodels were initially saturated with the heavy crude oil. The produced oil as a function of injected volume of solvents was measured using image analysis of the provided pictures. The concentration calibration curves of solvents in heavy crude oil were used for evaluating the solvents...