Loading...
Search for: on-dynamics
0.017 seconds
Total 4472 records

    Dynamic modeling, control system design and MIL–HIL tests of an unmanned rotorcraft using novel low-cost flight control system

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; 2019 ; 22286187 (ISSN) Khalesi, M. H ; Salarieh, H ; Foumani, M. S ; Sharif University of Technology
    Springer  2019
    Abstract
    Unmanned helicopters have gained great importance during recent years due to their special abilities such as hover flight, vertical take-off and landing, maneuverability and superior agility. The advances in electronic devices technologies lead to more powerful and lighter processors to be used in avionic systems which have attracted more attention to these UAVs. The first steps of utilizing an unmanned helicopter are dynamic modeling, control system design and performing model-in-the-loop (MIL) and hardware-in-the-loop (HIL) tests which are presented in this paper. In this research, MIL and HIL tests of an unmanned helicopter are done using novel Linux-based flight control system built on... 

    Assisted passive snake-like robots: Conception and dynamic modeling using Gibbs-Appell method

    , Article Robotica ; Volume 26, Issue 3 , 2008 , Pages 267-276 ; 02635747 (ISSN) Vossoughi, G ; Pendar, H ; Heidari, Z ; Mohammadi, S ; Sharif University of Technology
    2008
    Abstract
    In this paper, we present a novel structure of a snake-like robot. This structure enables passive locomotion in snake-like robots. Dynamic equations are obtained for motion in a horizontal plane, using Gibbs-Appell method. Kinematic model of the robot include numerous nonholonomic constraints, which can be omitted at the beginning by choosing proper coordinates to describe the model in Gibbs-Appell framework. In such a case, dynamic equations will be significantly simplified, resulting in considerable reduction of simulation time. Simulation results show that, by proper selection of initial conditions, joint angles operate in a limit cycle and robot can locomote steadily on a passive... 

    Unstable disk galaxies. I. Modal properties

    , Article Astrophysical Journal ; Volume 669, Issue 1 , 2007 , Pages 218-231 ; 0004637X (ISSN) Jalali, M. A ; Sharif University of Technology
    Institute of Physics Publishing  2007
    Abstract
    I utilize the Petrov-Galerkin formulation and develop a new method for solving the unsteady collisionless Boltzmann equation in both the linear and nonlinear regimes. In the first-order approximation, the method reduces to a linear eigen-value problem which is solved using standard numerical methods. I apply the method to the dynamics of a model stellar disk which is embedded in the field of a soft-centered logarithmic potential. The outcome is the full spectrum of eigen-frequencies and their conjugate normal modes for prescribed azimuthal wavenumbers. The results show that the fundamental bar mode is isolated in the frequency space, while spiral modes belong to discrete families that... 

    Dynamics of entanglement of bosonic modes on symmetric graphs

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 363, Issue 4 , 2007 , Pages 271-276 ; 03759601 (ISSN) Ghahari, F ; Karimipour, V ; Shahrokhshahi, R ; Sharif University of Technology
    Elsevier  2007
    Abstract
    We investigate the dynamics of an initially disentangled Gaussian state on a general finite symmetric graph. As concrete examples we obtain properties of this dynamics on mean field graphs (also called fully connected or complete graphs) of arbitrary sizes. In the same way that chains can be used for transmitting entanglement by their natural dynamics, these graphs can be used to store entanglement. We also consider two kinds of regular polyhedron which show interesting features of entanglement sharing. © 2006 Elsevier B.V. All rights reserved  

    Near-optimal terrain collision avoidance trajectories using elevation maps

    , Article 2006 IEEE Aerospace Conference, Big Sky, MT, 4 March 2006 through 11 March 2006 ; Volume 2006 , 2006 ; 1095323X (ISSN); 0780395468 (ISBN); 9780780395466 (ISBN) Malaek, M. B ; Abbasi, A ; Sharif University of Technology
    2006
    Abstract
    The main attempt of this paper is to present a new methodology to model a generic low-level flight close to terrain, which guarantees terrain collision avoidance. Benefiting the advantages of high-speed computer technology, this method uses satellite elevation maps to generate so called 'Quad-tree forms'. The latter is then used to find the optimal trajectories for low-level flights. The novelty of this approach, entitled the 'cost map', lies in the integration of aircraft dynamics into the segmented map. This procedure results in some near-optimal trajectories with respect to aircraft dynamics that could easily be used for minimization of flight path together with pilot effort. Different... 

    Computational study of parameters affecting turbulent flat plate film cooling

    , Article 2004 ASME Turbo Expo, Vienna, 14 June 2004 through 17 June 2004 ; Volume 3 , 2004 , Pages 23-32 Mahjoob, S ; Taeibi Rahni, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    Blade film cooling is one of the best methods to improve efficiency of gas turbines. In this work, two different methods of film cooling, namely, slot injection and discrete hole injection have been numerically studied on a flat plate. Incompressible, stationary, viscous, turbulent flow has been simulated using the FLUENT CFD code with the standard k-s model. The study of injection angle and velocity ratio show that the optimum film cooling in both methods, occurs at the jet angle of 30° but with the velocity ratio of 1.5 for slot case and 0.5 for discrete hole case. The study of jet aspect ratio in discrete hole method, shows that stretching the hole in spanwise direction increases the film... 

    3D Dynamic analysis of a flexible deploying arm subjected to base angular motions

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 2 , March , 2013 ; 02194554 (ISSN) Ghaleh, P. B ; Malaek, S. M ; Sharif University of Technology
    2013
    Abstract
    Problems related to the three-dimensional (3D) dynamics of the deploying flexible arms subjected to base angular motions are studied with simulated tip payloads and actual deployment trajectories. To facilitate the solution, an equivalent dynamical system is developed by introducing the inertial reaction forces on the arm, while the equations of motion are derived in the non-Newtonian reference frame attached to the arm. The dynamic behavior of the arm is investigated both by the finite element and assumed Modes methods for the purpose of verification. This study reveals that base angular motions lead to considerable couplings between the two lateral displacements and axial motions.... 

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    A complete treatment of thermo-mechanical ale analysis; Part 2: Finite element equations and applications

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 2 , 2010 , Pages 149-165 ; 10286284 (ISSN) Tadi Beni, Y ; Movahhedy, M. R ; Farrahi, G. H ; Sharif University of Technology
    2010
    Abstract
    In the first part of this paper series, a complete formulation for fully coupled ALE analysis of large deformation solid mechanic problems was developed. The formulation incorporated inertial, rate and thermal effects, and the treatment of rate and temperature dependent constitutive equations were presented. In this part, the ALE equations are discretized to form finite element equations. An algorithm for the treatment of mesh motion is described and example problems are presented to demonstrate the capability of the proposed formulation  

    A complete treatment of thermo-mechanical ale analysis; Part I: Formulation

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 2 , 2010 , Pages 135-148 ; 10286284 (ISSN) Tadi Beni, Y ; Movahhedy, M. R ; Farrahi, G. H ; Sharif University of Technology
    2010
    Abstract
    Arbitrary Lagrangian Eulerian (ALE) finite element method is extensively used for numerical simulation of solid mechanics problem. The versatility of the mesh in ALE approach makes it particularly effective and efficient in solving large deformation problems. In this work, a complete treatment of fully coupled ALE formulation is presented incorporating inertial, rate and thermal effects. The formulation may be used in conjunction with thermo-elasto-viscoplactic material models. A consistent and efficient tangent operator is developed in closed form to handle stress integration. The applications of this formulation are given in the second part of this paper  

    Generalization of ANN-based aircraft dynamics identification techniques into the entire flight envelope

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 52, Issue 4 , 2016 , Pages 1866-1880 ; 00189251 (ISSN) Roudbari, A ; Saghafi, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper, an approach has been proposed in order to extend the applicability of artificial neural network (ANN) techniques for flight dynamics identification into the entire flight envelope. In general, the aircraft flight dynamics is a nonlinear and coupled system whose modeling by ANNs is only possible to a limited degree around an operational point. Therefore, it cannot be expected that an ANN trained at a specific Mach and altitude will have satisfactory results in various flight conditions. Most recent studies on ANN-based identification and modeling of aircraft dynamics have been carried out primarily at specific Mach and altitudes. In this study, by introducing a new approach... 

    An investigation on the effects of gas pressure drop in heat exchangers on dynamics of a free piston stirling engine

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 30, Issue 2 , 2017 , Pages 1243-1252 ; 1728144X (ISSN) Zare, S ; Tavakolpour Saleh, A. R ; Aghajanzadeh, O ; Sharif University of Technology
    Materials and Energy Research Center  2017
    Abstract
    This paper is devoted to study the effects of pressure drop in heat exchangers on the dynamics of a free piston Stirling engine. First, the dynamic equations governing the pistons as well as the gas pressure equations for hot and cold spaces of the engine are extracted. Then, by substituting the obtained pressure equations into the dynamic relationships the final nonlinear dynamic equations governing the free piston Stirling engine are acquired. Next, effects of the gas pressure drop in heat exchangers on maximum strokes of the pistons and their velocities and accelerations are investigated. Furthermore, influences of pressure drop increase in the heat exchangers on maximum and minimum gas... 

    A novel computer-oriented dynamical approach with efficient formulations for multibody systems including ignorable coordinates

    , Article Applied Mathematical Modelling ; Volume 62 , 2018 , Pages 461-475 ; 0307904X (ISSN) Nejat Pishkenari, H ; Heidarzadeh, S ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Based on Lagrangian mechanics, we present a novel and computationally efficient set of equations of motion in the matrix notation, for unconstrained or constrained mechanical systems including ignorable coordinates. The equations are applicable to multibody systems including holonomic or nonholonomic constraints. It is shown that by appropriate selection of generalized speeds as a new set of motion variables, the constraint reaction forces can be automatically eliminated from the set of developed reduced dynamical equations in a straightforward manner, resulting in a minimal set of dynamic equations. We present simulation results on one constrained and one unconstrained system to demonstrate... 

    The design of a system dynamics model of crowdfunding for support of new knowledge-based IT startups

    , Article International Journal of Simulation and Process Modelling ; Volume 15, Issue 5 , 2020 , Pages 454-474 Haji Gholam Saryazdi, A ; Rajabzadeh Ghatari, A ; Mashayekhi, A ; Hassanzadeh, A ; Sharif University of Technology
    Inderscience Publishers  2020
    Abstract
    Considering the problem of funding start-ups because of their nature, some entrepreneurs developed crowdfunding in which funding is done via social network. Crowdfunding is a complicated and dynamic phenomenon. In addition, studies conducted on crowdfunding are not significant in number and they have been conducted in exploratory and partial manner. As a result, it is necessary to adopt an approach capable of understanding complex dynamic phenomena so as to be able to explain a crowdfunding. The present paper designs a system dynamics model of crowdfunding for support of new Iranian knowledge-based IT startups so as to highlight the complexities and dynamics of crowdfunding. The results of... 

    Dynamics of drops - Formation, growth, oscillation, detachment, and coalescence

    , Article Advances in Colloid and Interface Science ; Volume 222 , 2015 , Pages 413-424 ; 00018686 (ISSN) Karbaschi, M ; Taeibi Rahni, M ; Javadi, A ; Cronan, C. L ; Schano, K. H ; Faraji, S ; Won, J. Y ; Ferri, J. K ; Krägel, J ; Miller, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Single drops or bubbles are frequently used for the characterization of liquid- fluid interfaces. Their advantage is the small volume and the various protocols of their formation. Thus, several important methods are based on single drops and bubbles, such as capillary pressure and profile analysis tensiometry. However, these methods are often applied under dynamic conditions, although their principles are defined under equilibrium conditions. Thus, specific attention has to be paid when these methods are used beyond certain limits. In many cases, computational fluid dynamics (CFD) simulations have allowed researchers, to extend these limits and to gain important information on the... 

    Congestion effect on maximum dynamic stresses of bridges

    , Article Structural Engineering and Mechanics ; Volume 55, Issue 1 , 2015 , Pages 111-135 ; 12254568 (ISSN) Samanipour, K ; Vafaia, H ; Sharif University of Technology
    Techno Press  2015
    Abstract
    Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper presents how to model congestion on bridges and how the maximum dynamic stress of bridges change during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is applied to the maximum static moment under static loading. This paper presents an algorithm to solve the governing equation of the bridge as well as the equations of motions of two real European trucks with different speeds, simultaneously. It will be shown, considering congestion in eight case... 

    Effect of boundary conditions on dynamic behaviour of bridges

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 169, Issue 2 , 2016 , Pages 121-140 ; 09650911 (ISSN) Samanipour, K ; Vafai, H ; Sharif University of Technology
    Thomas Telford Services Ltd 
    Abstract
    A moving vehicle, owing to its vibration and mass inertia, has significant effects on the dynamic response of structures. Most bridge codes define a factor called the dynamic load allowance, which is applied to the maximum static moment under static loading due to traffic load. This paper presents how to model an actual truck on bridges and how the maximum dynamic stresses of bridges change during the passage of moving vehicles. Furthermore, an algorithm to solve the governing equation of the bridge simultaneous with the equations of motion of an actual European truck is presented. Subsequently, 32 dynamic analyses of different bridges with different spans, road profiles and boundary... 

    Toward A Safe, Assured, and Dynamic Communication Protocol Stack

    , Ph.D. Dissertation Sharif University of Technology Niamanesh, Mahdi (Author) ; Jalili, Rasool (Supervisor)

    Passive dynamic object manipulation: A framework for passive walking systems

    , Article Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics ; Volume 227, Issue 2 , 2013 , Pages 185-198 ; 14644193 (ISSN) Beigzadeh, B ; Meghdari, A ; Sohrabpour, S ; Sharif University of Technology
    2013
    Abstract
    In this study, we deal with passive dynamic object manipulation. During passive dynamic object manipulation, a passive object is manipulated using passive manipulators. Like other passive robotic systems, there are no actuators in these systems. The object follows a path and travels along it under the effect of its own weight, as well as, the interaction force applied by each manipulator on it. The objects are not necessarily rigid, but we manipulate passive multibody objects as well as rigid ones. Thus, for a passive walking system, we assume that the passive walker is a multibody object and is manipulated by the ground (zero degree-of-freedom manipulator). As an example, we show that a... 

    A survey of dynamic software updating

    , Article Journal of software: Evolution and Process ; Volume 25, Issue 5 , 2013 , Pages 535-568 ; 20477481 (ISSN) Seifzadeh, H ; Abolhassani, H ; Moshkenani, M. S ; Sharif University of Technology
    2013
    Abstract
    Application update at run-time remains a challenging issue in software engineering. There are many techniques with different evaluation metrics, resulting in different behaviours in the application being updated. In this paper, we provide an extensive review of research work on dynamic software updating. A framework for the evaluation of dynamic updating features is developed, and the articles are categorized and discussed based on the provided framework. Areas of online software maintenance requiring further research are also identified and highlighted. This information is deemed to not only assist practitioners in selecting appropriate dynamic updating techniques for their systems, but...