Loading...
Search for: on-dynamics
0.017 seconds
Total 4472 records

    Application of endurance time method in nonlinear seismic analysis of steel frames

    , Article Procedia Engineering ; Volume 14 , 2011 , Pages 3237-3244 ; 18777058 (ISSN) Riahi, H. T ; Estekanchi, H. E ; Seyedain Boroujeni, S ; Sharif University of Technology
    2011
    Abstract
    In Endurance Time (ET) method gradually intensifying acceleration functions are created in a manner that the linear and nonlinear response spectra of them, while being proportional to average of real earthquakes spectra, intensifies in a uniform manner with time. These functions are used as input functions for nonlinear time history analysis of structures and performance of structures is assessed based on the maximum time duration that they can meet the specified performance objectives. In this paper, application of the ET method in nonlinear seismic analysis of structures has been investigated. Numerical procedures and optimization techniques that are used for the production of acceleration... 

    Dynamics of nanodroplets on wettability gradient surfaces

    , Article Journal of Physics Condensed Matter ; Volume 23, Issue 8 , February , 2011 ; 09538984 (ISSN) Moosavi, A ; Mohammadi, A ; Sharif University of Technology
    2011
    Abstract
    A lubrication model is used to study the dynamics of nanoscale droplets on wettability gradient surfaces. The effects of the gradient size, size of the nanodroplets and the slip on the dynamics have been studied. Our results indicate that the position of the center of mass of the droplets can be well described in terms of a third-order polynomial function of the time of the motion for all the cases considered. By increasing the size of the droplets the dynamics increases. It is also shown that the slip can considerably enhance the dynamics. The results have been compared with the results obtained using theoretical models and molecular dynamics simulations  

    Passive dynamic object manipulation: preliminary definition and examples

    , Article Zidonghua Xuebao/Acta Automatica Sinica ; Volume 36, Issue 12 , 2010 , Pages 1711-1719 ; 02544156 (ISSN) Beigzadeh, B ; Meghdari, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    In this work, we introduce a category of dynamic manipulation processes, namely passive dynamic object manipulation, according to which an object is manipulated passively. Specifically, we study passive dynamic manipulation here. We define the main concept, discuss the challenges, and talk about the future directions. Like other passive robotic systems, there are no actuators in these systems. The object follows a path and travels along it under the effect of its own weight, as well as the interaction force applied by each manipulator on it. We select some simple examples to show the concept. For each example, dynamic equations of motion are derived and the stability of the process is taken... 

    Molecular dynamics simulation of manipulation of metallic nanoclusters on double-layer substrates

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 42, Issue 9 , 2010 , Pages 2364-2374 ; 13869477 (ISSN) Mahboobi, S. H ; Meghdari, A ; Jalili, N ; Amiri, F ; Sharif University of Technology
    2010
    Abstract
    Molecular dynamics simulations are carried out to investigate the manipulation of metallic clusters on double-layer surfaces. The system parts are made of transition metals. The conditions which are subjected to change in the tests are material combinations for cluster, main substrate and lubricant layer (adlayer). In addition to qualitative observations, two criteria which represent the particle deformation and substrate abrasion are utilized as evaluation tools and are computed for each case. Obtaining this sort of knowledge is highly beneficial for further experiments in order to be able to plan the conditions and routines, which guarantee better success in the manipulation process  

    Nanocar and nanotruck motion on gold surface

    , Article 1st International Conference on Manipulation, Automation and Robotics at Small Scales, MARSS 2016, 18 July 2016 through 21 July 2016 ; 2016 ; 9781509015108 (ISBN) Nemati, A. R ; Nejat Pishkenari, H ; Meghdari, A ; Shorabpour, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper we have studied the motion of a nanocar and nanotruck on gold substrate using the classical molecular dynamics method. Analyzing the motion regime of the nanocar at different temperatures is one of the main goals of this paper. In the past years, similar molecules such as Trimmer, Z-car and nanotruck have been simulated by Konyukhov and Akimov. To increase the modeling accuracy in this paper we have used classical molecular dynamics contrary to previous works which used a rigid body molecular dynamics method. The result of our simulations were compared qualitatively to the experimental tests performed by Zhang et al. [12]. There was a good agreement between the results achieved... 

    Buckling behavior of the anchored steel tanks under horizontal and vertical ground motions using static pushover and incremental dynamic analyses

    , Article Thin-Walled Structures ; Volume 112 , 2017 , Pages 173-183 ; 02638231 (ISSN) Sobhan, M. S ; Rahimzadeh Rofooei, F ; Khajeh Ahmad Attari, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper investigates the static and dynamic buckling of an anchored cylindrical steel tank subjected to horizontal and vertical ground acceleration. The buckling capacity of the tank is estimated using static pushover (SPO) and incremental dynamic analyses (IDA). Appropriate load patterns due to the horizontal and vertical components of ground excitations are utilized for SPO analyses. The buckling capacity curves and critical buckling loads computed using SPO analyses are compared to those obtained from IDA. A proper vertical to horizontal acceleration ratio (av/ah) for SPO analysis is proposed that leads to good agreement between SPO and IDA results. © 2017  

    Hierarchical decentralized control of a five-link biped robot

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2675-2692 ; 10263098 (ISSN) Yazdani, M ; Salarieh, H ; Foumani, M. S ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Most of the biped robots are controlled using pre-computed trajectory methods or methods based on multi-body dynamics models. The pre-computed trajectory-based methods are simple; however, a system becomes highly vulnerable to the external disturbances. In contrast, dynamic methods make a system act faster, yet extensive knowledge is required about the kinematics and dynamics of the system. This fact gave rise to the main purpose of this study, i.e., developing a controller for a biped robot to take advantage of the simplicity and computational efficiency of trajectory-based methods and the robustness of the dynamic-based approach. To do so, this paper presents a two-layer hierarchical... 

    Coarse-graining models for molecular dynamics simulations of FCC metals

    , Article Journal of Theoretical and Applied Mechanics (Poland) ; Volume 56, Issue 3 , 2018 , Pages 601-614 ; 14292955 (ISSN) Delafrouz, P ; Nejat Pishkenari, H ; Sharif University of Technology
    Polish Society of Theoretical and Allied Mechanics  2018
    Abstract
    In this paper, four coarse-graining (CG) models are proposed to accelerate molecular dynamics simulations of FCC metals. To this aim, at first, a proper map between beads of the CG models and atoms of the all-atom (AA) system is assigned, afterwards mass of the beads and the parameters of the CG models are determined in a manner that the CG models and the original all-atom model have the same physical properties. To evaluate and compare precision of these four CG models, different static and dynamic simulations are conducted. The results show that these CG models are at least 4 times faster than the AA model, while their errors are less than 1 percent. © 2018 Polish Society of Theoretical... 

    On the list dynamic coloring of graphs

    , Article Discrete Applied Mathematics ; Volume 157, Issue 14 , 2009 , Pages 3005-3007 ; 0166218X (ISSN) Akbari, S ; Ghanbari, M ; Jahanbekam, S ; Sharif University of Technology
    2009
    Abstract
    A proper vertex coloring of a graph G is called a dynamic coloring if for every vertex v of degree at least 2, the neighbors of v receive at least two different colors. Assume that ch2 (G) is the minimum number k such that for every list assignment of size k to each vertex of G, there is a dynamic coloring of G such that every vertex is colored with a color from its list. In this paper, it is proved that if G is a graph with no component isomorphic to C5 and Δ (G) ≥ 3, then ch2 (G) ≤ Δ (G) + 1, where Δ (G) is the maximum degree of G. This generalizes a result due to Lai, Montgomery and Poon which says that under the same assumptions χ2 (G) ≤ Δ (G) + 1. Among other results, we determine ch2... 

    Using approximate similitude to design dynamic similar models

    , Article Aerospace Science and Technology ; Volume 94 , 2019 ; 12709638 (ISSN) Banazadeh, A ; Hajipouzadeh, P ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    This research deals with the analysis of approximate similitude between the dynamic similar models and the full-scale prototype of an aircraft. Due to physical and technical constraints, a full dynamic similarity is not practically possible and previous works have all neglected one or two similarity criteria like Mach or Reynolds numbers for the sake of Froude number similarity. In this work, it is shown that Mach number has an important effect on aerodynamic characteristics and dynamic response of an aircraft and that neglecting it makes the generalization of the scale-model test data invalid for the full-scale prototype. In order to address this problem, a measurable quantity named... 

    Role of graphene surface ripples and thermal vibrations in molecular dynamics of C60

    , Article Journal of Physical Chemistry C ; Volume 123, Issue 32 , 2019 , Pages 20026-20036 ; 19327447 (ISSN) Mofidi, S. M ; Nejat Pishkenari, H ; Ejtehadi, M. R ; Akimov, A. V ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Nanocars are artificial molecular machines with chassis, axles, and wheels designed for nanoscale transport at materials' surfaces. Understanding the dependence of surface dynamics of nanocars on the substrate's physicochemical properties is critical to the design of the transport properties of such man-made nanoscale devices. Among the multitude of potential substrates for the nanotransporters, graphene exhibits intrinsic ripples on its surface, which may affect the surface dynamics of nanocars. In this work, we report our molecular dynamics study of motion of C60, a popular nanocar wheel, on the graphitic substrates with systematically controllable surface ripples. We find that surface... 

    Charge asymmetry effect in ion transport through angstrom-scale channels

    , Article Journal of Physical Chemistry C ; Volume 123, Issue 2 , 2019 , Pages 1462-1469 ; 19327447 (ISSN) Yu, Y ; Fan, J ; Esfandiar, A ; Zhu, Y ; Wu, H ; Wang, F ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Structural and dynamic properties of ions confined in nanoslits are crucial to understand the fundamental mechanism underlying a wide range of chemical and biological phenomena. K + and Cl - show similar ion mobilities in a bulk aqueous solution, whereas they exhibit a remarkable difference when transporting through an angstrom-scale channel. Our molecular dynamics simulations uncover that such discrepancy originates from the subtle differences in their hydration structures and preferable locations across the channel. Opposite charge causes different water dipolar orientations around ions, mediating the distance and tribological interactions between hydrated ions and channel's walls.... 

    Dealing with biped locomotion as a dynamic object manipulation problem: Manipulating of body using legs

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 9 PART B , 2008 , Pages 1209-1216 ; 0791843033 (ISBN); 9780791843031 (ISBN) Beigzadeh, B ; Meghdari, A ; Beigzadeh, Y ; Sharif University of Technology
    2008
    Abstract
    In this paper, we try to show that it is possible to deal with biped locomotion as a dynamic object manipulation problem. We show that during locomotion, a biped locomotion can be seen as manipulating of upper part of biped robot using a leg, which now plays the role of a manipulator. So the whole locomotion process can be seen as a dynamic manipulation of an object (upper part of a biped robot) using a numerous series of manipulators each of which placed in a proper place where the object tends to land, so it catches the object and throws it to the next point which another manipulator waits for catching it. The authors in the previous works have explored the problem of dynamic manipulation... 

    Application of Endurance Time method in linear seismic analysis

    , Article Engineering Structures ; Volume 29, Issue 10 , 2007 , Pages 2551-2562 ; 01410296 (ISSN) Estekanchi, H. E ; Valamanesh, V ; Vafai, A ; Sharif University of Technology
    2007
    Abstract
    The Endurance Time (ET) method is a time-history based dynamic pushover procedure for seismic analysis and design of structures. In this procedure, structures are subjected to a specially designed intensifying accelerogram and their Endurance Time is measured based on the time interval during which they can resist the imposed dynamic actions. In this paper, application of the ET method in linear seismic analysis of structures has been investigated. The procedure for generating code compliant uniformly intensifying ET accelerograms has been explained. A set of three such accelerograms have been applied to various moment and braced steel frames and the results of analysis are compared to... 

    Dynamic error analysis of gantry type coordinate measuring machines

    , Article Scientia Iranica ; Volume 14, Issue 3 , 2007 , Pages 278-290 ; 10263098 (ISSN) Ahmadian, M. T ; Vossoughi, G. R ; Ramezani, S ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    Coordinate Measuring Machines (CMMs) are designed for precision inspection of complex industrial products. The mechanical accuracy of CMMs depends on both static and dynamic sources of error. In automated CMMs, one of the dynamic error sources is vibration of the probe, due to inertia forces resulting from parts acceleration and deceleration. Modeling of a gantry type CMM, based on the Timoshenko beam theory with moving mass effects, is developed and the dynamic errors of the probe resulting from the acceleration and deceleration of moving parts, are calculated. Findings from analytical solution and dynamic modeling software indicate high accuracy and good agreement between the results. ©... 

    Social distancing in pedestrian dynamics and its effect on disease spreading

    , Article Physical Review E ; Volume 104, Issue 1 , 2021 ; 24700045 (ISSN) Sajjadi, S ; Hashemi, A ; Ghanbarnejad, F ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    Nonpharmaceutical measures such as social distancing can play an important role in controlling the spread of an epidemic. In this paper, we use a mathematical model combining human mobility and disease spreading. For the mobility dynamics, we design an agent-based model consisting of pedestrian dynamics with a novel type of force to resemble social distancing in crowded sites. For the spreading dynamics, we consider the compartmental susceptible-exposed-infective (SEI) dynamics plus an indirect transmission with the footprints of the infectious pedestrians being the contagion factor. We show that the increase in the intensity of social distancing has a significant effect on the exposure... 

    A system dynamics approach to analyze water resources systems

    , Article 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, 11 September 2005 through 16 September 2005 ; 2005 , Pages 4991-5000 ; 8987898245 (ISBN); 9788987898247 (ISBN) Bagheri, A ; Baradarannia, M.R ; Sarang, A ; Hjorth, P ; Byong-Ho J ; Sang I.L ; Won S.I ; Gye-Woon C ; Sharif University of Technology
    Korea Water Resources Association  2005
    Abstract
    Several mathematical modeling approaches are used to model water resources systems such as deterministic and non-deterministic, lumped and distributed, steady and dynamic, simulation and optimization approaches. All these modeling paradigms - categorized as open systems - assume that the input conditions to the system will not change during their operation. What is happening in the real world is somewhat different. Due to their dynamic behaviors, real world events exert feedbacks from their outputs to their inputs which may cause the input conditions vary with time. This is the main focus of the system dynamics theory which has been introduced in this paper to be applied in water resources... 

    A history-dependent stochastic predator-prey model: Chaos and its elimination

    , Article European Physical Journal B ; Volume 13, Issue 3 , 2000 , Pages 601-606 ; 14346028 (ISSN) Gerami, R ; Ejtehadi, M. R ; Sharif University of Technology
    Springer New York  2000
    Abstract
    A non-Markovian stochastic predator-prey model is introduced in which the prey are immobile plants and predators are diffusing herbivors. The model is studied by both mean-field approximation (MFA) and computer simulations. The MFA results a series of bifurcations in the phase space of mean predator and prey densities, leading to a chaotic phase. Because of emerging correlations between the two species distributions, the interaction rate alters and if it is chosen to be the value which is obtained from the simulation, then the chaotic phase disappears  

    Structural Synthesis of a Family of 5D of 3T2R Parallel Mechanisms, and Analysis of the Superior One

    , M.Sc. Thesis Sharif University of Technology Motevalli Somehsaraei, Benyamin (Author) ; Zohoor, Hassan (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    The primary objective of this dissertation is to obtain a mechanism from the family of 5-dof parallel mechanisms of type 3T2R which gains the advantages of higher kinematic performance, low coupling of motion, and simple kinematics and control commands. Based on this aim, at first a method for structural synthesis of this type of mechanisms is introduced. The method is based on the theory of linear transformation and a geometrical analysis. By using this method, a set of novel 5-dof 3T2R parallel mechanism are introduced for the first time in the literature. In order to compare the designed mechanisms and to identify the promising ones, some important criteria which are a) low coupling... 

    Dynamic Analysis of a Simply Supported Functionally Graded Material Euler-Bernoulli Beam under a Moving Oscillator

    , M.Sc. Thesis Sharif University of Technology Rajabi, Kaveh (Author) ; Kargarnovin, Mohammad Hossein (Supervisor)
    Abstract
    In recent decades, employing composite has growing field in various industries due to distinct features like high specific stiffness and strength. Functionally graded materials are clasified as inhomogeneous composite materials. Nowadays many researchers are investigating the behaviors of plates, shells and beam liked structures made of FGMs. In this project the dynamic behaviors of a FGM simply supported beam under a moving oscillator are studied. The beam properties are assumed to be varied through the thickness following a simple power law distribution. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Euler–Bernoulli beam theory....