Loading...
Search for: osmosis
0.011 seconds

    The Effects of Various Parameters on Wellbore Stability During Drilling Through Shale Formations

    , Article Petroleum Science and Technology ; Volume 33, Issue 12 , 2015 , Pages 1275-1285 ; 10916466 (ISSN) Rafieepour, S ; Ghotbi, C ; Pishvaie, M. R ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Field evidence indicates that the thermal and chemical regimes in wellbore considerably affect the wellbore stability. This study presents a general coupled model for transport of solute, solvent and heat including their combined effects on the wellbore stability. Optimization of drilling fluid parameters is crucial for wellbore stability analysis particularly in high pressure-high temperature environments. The coupled effects of chemical potential and temperature gradients on fluid flow significantly change the pore pressure and stress around a borehole. The effects of various parameters such as mud weight, solute concentration gradient, shale properties, and temperature gradient on... 

    Simulation of wellbore stability with thermo-hydro-chemo-mechanical coupling in troublesome formations: an example from Ahwaz oil field, SW Iran

    , Article Arabian Journal of Geosciences ; Volume 8, Issue 1 , 2015 , Pages 379-396 ; 18667511 (ISSN) Rafieepour, S ; Jalayeri, H ; Ghotbi, C ; Pishvaie, M. R ; Sharif University of Technology
    Abstract
    Wellbore stability is a main concern in drilling operation. Troublesome drilling issues are chemically active formations and/or high-pressure–high-temperature environments. These are mainly responsible for most of wellbore instabilities. Wellbore failure is mostly controlled by the interaction between active shales and drilling fluid in shale formations. The factors influencing this interaction consist of fluid pressure, temperature, composition of drilling fluid, and exposure time. In this paper, a non-linear fully coupled chemo-thermo-poroelasticity model is developed. At first, a fully implicit finite difference model is presented to analyze the problem, and then, it is verified through... 

    Polyamide/polyacrylonitrile thin film composites as forward osmosis membranes

    , Article Journal of Applied Polymer Science ; Volume 133, Issue 42 , 2016 ; 00218995 (ISSN) Hajighahremanzadeh, P ; Abbaszadeh, M ; Mousavi, S. A ; Soltanieh, M ; Bakhshi, H ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    Thin film composites (TFCs) as forward osmosis (FO) membranes for seawater desalination application were prepared. For this purpose, polyacrylonitrile (PAN) as a moderately hydrophilic polymer was used to fabricate support membranes via nonsolvent-induced phase inversion. A selective thin polyamide (PA) film was then formed on the top of PAN membranes via interfacial polymerization reaction of m-phenylenediamine and trimesoyl chloride (TMC). The effects of PAN solution concentration, solvent mixture, and coagulation bath temperature on the morphology, water permeability, and FO performance of the membranes and composites were studied. Support membranes based on low PAN concentrations (7 wt... 

    Effect of electromagnetic field on membrane fouling in reverse osmosis process

    , Article Desalination ; Volume 395 , 2016 , Pages 41-45 ; 00119164 (ISSN) Rouina, M ; Kariminia, H. R ; Mousavi, S. A ; Shahryari, E ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    In the present study, the effect of electromagnetic field on the salt and water transport and reduction of carbonate deposit during reverse osmosis desalination was investigated. The electromagnetic field was generated by AC current through a solenoid wound around the membrane separation module. The current intensity and frequency was 25 A and 50 Hz, respectively. Experiments were conducted using CaCO3 solution at the concentration of 5.5 mmol/L. For comparison purposes, desalination by the membrane, in the presence and absence of an electromagnetic field was conducted. While the desalination process temperature was kept constant, the product temperature increased by less than 2 °C when the... 

    Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 94, Issue 3 , 2016 ; 15393755 (ISSN) Yousefnezhad, M ; Fotouhi, M ; Vejdani, K ; Kamali Zare, P ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ=D/D∗) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D∗ = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes... 

    Numerical simulation for efficient mixing of newtonian and non-Newtonian fluids in an electro-osmotic micro-mixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 107 , 2016 , Pages 11-20 ; 02552701 (ISSN) Shamloo, A ; Mirzakhanloo, M ; Dabirzadeh, M. R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present study, deals with a new mixing technique using a two-phase electrode array, which is charged with alternating current (AC) signals, located in specific parts of the geometry. This significantly contributes to a chaotic mixing mechanism using a low amplitude AC voltage within a micro-channel. Study analysis demonstrates that the optimization of the effective parameters such as geometrical features, voltage amplitude, fluid inlet velocity, AC frequency and phase lag for a defined fluid can lead to an optimum and highly efficient mixer by considerably increasing disturbances in a primary highly ordered laminar flow. Three different geometries of micro mixer are studied; one-ring... 

    Recovery of cooling tower blowdown water for reuse: the investigation of different types of pretreatment prior nanofiltration and reverse osmosis

    , Article Journal of Water Process Engineering ; Volume 10 , 2016 , Pages 188-199 ; 22147144 (ISSN) Davood Abadi Farahani, M. H ; Borghei, S. M ; Vatanpour, V ; Sharif University of Technology
    Abstract
    The suitability of two different pretreatment methods, i.e., coagulation-filtration and ultrafiltration (UF), and two final membrane treatment technologies, namely nanofiltration (NF) and reverse osmosis (RO), for desalination of a cooling tower blowdown (CTBD) was investigated. Particular attention was paid to ensuring that the best pretreatment method could enhance the permeate flux and lifespan of the NF and RO membranes and decrease the membranes' fouling characteristics. Furthermore, the difference of NF and RO performances in CTBD treatment was investigated. In order to find the most appropriate type of coagulant, coagulant dosage, pH and co-coagulant dosage, 21 jar tests were... 

    Preparation of mesh-reinforced cellulose acetate forward osmosis membrane with very low surface roughness

    , Article Korean Journal of Chemical Engineering ; Volume 34, Issue 12 , 2017 , Pages 3170-3177 ; 02561115 (ISSN) Mirkhalili, S. M ; Mousavi, S. A ; Ramazani Saadat Abadi, A ; Sadeghi, M ; Sharif University of Technology
    Abstract
    Mesh-reinforced cellulose acetate (CA)-based membranes were prepared for forward osmosis (FO) by immersion precipitation. Casting compositions such as CA percent and 1, 4-dioxane/acetone ratio and also preparation conditions such as evaporation time, coagulation bath and annealing temperatures were tested for membranes’ performance. The results were compared with commercially CTA membranes. The best membrane (17.9% polymer and 1, 4-dioxane/acetone ratio of 1.89) showed water flux of 9.3 L/m2h (LMH) and RSF of 0.536 mol NaCl/m2h. Moreover, the membrane structure was reinforced by a polyester mesh, which created micro pores in the back of the membrane. This caused higher water flux and RSF... 

    Modelling and economic evaluation of pressure-retarded osmosis power plant case study: Iran

    , Article International Journal of Ambient Energy ; 2017 , Pages 1-13 ; 01430750 (ISSN) Ansari, A ; Abbaspour, M ; Sharif University of Technology
    Abstract
    In recent years, a growing interest in investigation of new energies has been observed. Pressure-retarded osmosis (PRO) could be a feasible source of renewable energy. This study aims to present a model based on the present technology of PRO power plant components for design and economic evaluation of a PRO power plant, and to investigate case studies in order to demonstrate how each main component of a PRO power plant affects the economic evaluation. Therefore, all the mechanisms including intake and outfall systems, pre-treatment system, membrane system, and transportation and generation systems are explicated and meant to present the capability of the model to design the PRO power plant.... 

    Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

    , Article Membrane Water Treatment ; Volume 8, Issue 4 , 2017 , Pages 323-336 ; 20058624 (ISSN) Mirfarah, H ; Mousavi, S. A ; Mortazavi, S. S ; Sadeghi, M ; Bastani, D ; Sharif University of Technology
    Techno Press  2017
    Abstract
    The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; 2017 , Pages 1-21 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Polyamide membrane surface and bulk modification using humid environment as a new heat curing medium

    , Article Journal of Membrane Science ; Volume 523 , 2017 , Pages 129-137 ; 03767388 (ISSN) Karimi, H ; Bazgar Bajestani, M ; Mousavi, S. A ; Mokhtari Garakani, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Heat curing was devised in temperature-controlled steam and water environments to synthesize reverse osmosis (RO) polyamide (PA) membrane. The effect of new curing media on the physicochemical properties and RO performance of the synthesized polyamides was fully investigated using X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and water drop contact angle. The results show a reduction in amide linkage content on the surface of the steam-cured polyamide and surface and bulk of the water-cured polyamide. Additionally, it was revealed that heat curing in the humidity-controlled environment... 

    On the design of graphene oxide nanosheets membranes for water desalination

    , Article Desalination ; Volume 422 , 2017 , Pages 83-90 ; 00119164 (ISSN) Safaei, S ; Tavakoli, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    According to current researches, graphene oxide (GO) membranes show promising desalination properties due to ease of synthesis, low production cost, and high efficiency. There are several experimental works to study ionic sieving properties of GO membranes. However, it is difficult to characterize atomistic mechanism of water permeation and ion rejection by experimental approaches. On the other hand, there exist a few reports in which the atomistic picture of water permeation across GO membranes is investigated by means of molecular dynamics (MD) simulation. In the present work, in addition to water desalination, the atomic scale mechanism of ion rejection is studied using large scale MD... 

    Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review

    , Article Desalination ; Volume 420 , 2017 , Pages 330-383 ; 00119164 (ISSN) Asadollahi, M ; Bastani, D ; Musavi, S. A ; Sharif University of Technology
    Abstract
    Reverse osmosis (RO) membrane process has become the most promising technology for desalination to produce purified water. Among numerous polymeric materials used to fabricate RO membranes, aromatic polyamide thin film composite (TFC) membranes are dominant in commercial RO membrane processes because of their high salt rejection and water permeability as well as their excellent chemical, thermal, and mechanical stability. However, the major hindrance to the effective application of polyamide TFC RO membranes is membrane fouling. Furthermore, polyamide TFC RO membranes have limited stability to chlorine, which is commonly used as disinfect to control membrane biofouling. These two factors... 

    A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels

    , Article Journal of the Mechanics and Physics of Solids ; Volume 116 , July , 2018 , Pages 239-266 ; 00225096 (ISSN) Dehghany, M ; Zhang, H ; Naghdabadi, R ; Hu, Y ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Gels are composed of crosslinked polymer network and solvent molecules. When the main chain network is incorporated with functional groups that can undergo photo-chemical reaction upon light irradiation, the gel becomes light-responsive. Under irradiation, the photosensitive groups may undergo photo-ionization process and generate charges that are attached to the main chain or diffuse into the solvent. The newly generated ions disturb the osmotic balance of the gel medium. As a result, water molecules and mobile ions are driven into or out of the network to compensate the osmotic imbalance, which eventually leads to macroscopic swelling or shrinking of the gel. In this work, we develop a... 

    Preparation of poly(vinyl chloride) (PVC) ultrafiltration membranes from PVC/additive/solvent and application of UF membranes as substrate for fabrication of reverse osmosis membranes

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 21 , 2018 ; 00218995 (ISSN) Sabzi Dizajikan, B ; Asadollahi, M ; Musavi, A ; Bastani, D ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Ultrafiltration (UF) membranes were prepared from poly(vinyl chloride) (PVC) as main polymer, poly(vinyl pyrrolidone) (PVP) as additive, and 1-methyl-2-pyrrolidone (NMP) as solvent using Design Expert software for designing the experiments. The membranes were characterized by SEM, contact angle measurement, and atomic force microscopy. The performance of UF membranes was evaluated by pure water flux (PWF) and blue indigo dye particle rejection. In addition, the molecular weight cutoff of UF membranes was determined by poly(ethylene glycol) (PEG) rejection. The UF membranes were used as substrates for fabrication of polyamide thin film composite (TFC) reverse osmosis (RO) membranes. The... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; Volume 32, Issue 1 , 2018 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Optimum design of R.O. membrane by using simulation techniques

    , Article Desalination and Water Treatment ; Volume 9, Issue 1-3 , 2009 , Pages 189-194 ; 19443994 (ISSN) Afrasiabi, N ; Ehteshami, M ; Ardakanian, R ; Sharif University of Technology
    2009
    Abstract
    Increasing demand of fresh water, and limitation water resources, with respect to world economic growth brings up the importance of utilization of saline water. At the current research the sensitivity analysis of ROSA was conducted. For this analysis, a single stage reverse osmosis is designed for well water specifi cation in southern Tehran under following condition: Feed fl ow: 40 m3/h and membrane Element: BW30–400 FR. The sensitivity analyses for all chemical element of base water were performed. As a result of sensitivity analysis shortest sensitivity gap, belongs to boron, and longest sensitivity gap, belongs to calcium. Which refl ects, under the same conditions, the least element to... 

    Crude oil desalter effluent treatment by a hybrid UF/RO membrane separation process

    , Article Desalination ; Volume 238, Issue 1-3 , 2009 , Pages 174-182 ; 00119164 (ISSN) Norouzbahari, S ; Roostaazad, R ; Hesampour, M ; Sharif University of Technology
    2009
    Abstract
    Crude oil desalter effluent from a Tehran oil refinery was treated by a hybrid UF/RO membrane separation process. Ultrafiltration (UF) was used primarily to remove the emulsified oil droplets followed by the removal of total dissolved solids (TDS) via reverse osmosis (RO). The UF membrane was a hydrophilic flat sheet polysulfone ultrafiltration membrane with MWCO of 100 kDa while the RO membrane was a spiral-wound thin-film composite polyamide. Effect of operating conditions such as transmembrane pressure and crossflow velocity were studied in UF pretreatment. The experimental results showed that the UF membrane removed more than 75% of the oil and can be considered as an effective... 

    Modeling of aqueous biomolecules using a new free-volume group contribution model

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 8 , 2009 , Pages 4109-4118 ; 08885885 (ISSN) Pazuki, G. R ; Taghikhani, V ; Vossoughi, M ; Sharif University of Technology
    2009
    Abstract
    In this article, a new group contribution model is suggested for obtaining the thermodynamic properties of biomolecules in aqueous solutions. Accordingly, a Freed-FV model has been applied for the combinatorial free-volume term. The activity coefficients, solubilities, densities, and vapor pressures of amino acids and simple peptides in aqueous solutions were correlated, using the proposed group contribution model. Group interaction parameters of the proposed model were obtained by use of experimental data from amino acids available in the literature. The results demonstrate that the group contribution model can accurately correlate activity coefficient, solubility, density, and vapor...